scholarly journals Aerobic Biofilms Grown from Athabasca Watershed Sediments Are Inhibited by Increasing Concentrations of Bituminous Compounds

2013 ◽  
Vol 79 (23) ◽  
pp. 7398-7412 ◽  
Author(s):  
Etienne Yergeau ◽  
John R. Lawrence ◽  
Sylvie Sanschagrin ◽  
Julie L. Roy ◽  
George D. W. Swerhone ◽  
...  

ABSTRACTSediments from the Athabasca River and its tributaries naturally contain bitumen at various concentrations, but the impacts of this variation on the ecology of the river are unknown. Here, we used controlled rotating biofilm reactors in which we recirculated diluted sediments containing various concentrations of bituminous compounds taken from the Athabasca River and three tributaries. Biofilms exposed to sediments having low and high concentrations of bituminous compounds were compared. The latter were 29% thinner, had a different extracellular polysaccharide composition, 67% less bacterial biomass per μm2, 68% less cyanobacterial biomass per μm2, 64% less algal biomass per μm2, 13% fewer protozoa per cm2, were 21% less productive, and had a 33% reduced content in chlorophyllaper mm2and a 20% reduction in the expression of photosynthetic genes, but they had a 23% increase in the expression of aromatic hydrocarbon degradation genes. Within theBacteria, differences in community composition were also observed, with relatively moreAlphaproteobacteriaandBetaproteobacteriaand lessCyanobacteria,Bacteroidetes, andFirmicutesin biofilms exposed to high concentrations of bituminous compounds. Altogether, our results suggest that biofilms that develop in the presence of higher concentrations of bituminous compounds are less productive and have lower biomass, linked to a decrease in the activities and abundance of photosynthetic organisms likely due to inhibitory effects. However, within this general inhibition, some specific microbial taxa and functional genes are stimulated because they are less sensitive to the inhibitory effects of bituminous compounds or can degrade and utilize some bitumen-associated compounds.

1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1982 ◽  
Vol 57 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Kamal S. Paul ◽  
Eric T. Whalley ◽  
Christine Forster ◽  
Richard Lye ◽  
John Dutton

✓ The authors have studied the ability of prostacyclin to reverse contractions of human basilar arteries in vitro that were induced by a wide range of substances implicated in the etiology of cerebral arterial spasm. Prostacyclin (10−10 to 10−6M) caused a dose-related reversal of contractions induced by 5-hydroxytryptamine, noradrenaline, angiotensin II, prostaglandin (PG)F2α, and U-46619 (a thromboxane-A2 mimetic). These agents were tested at concentrations or volumes that produced almost maximum or maximum responses and those that produced approximately 50% of the maximum response. Contractions induced by maximum concentrations of angiotensin II and U-46619 were least affected by prostacyclin. In addition, contractions induced by thromboxane-A2 generated from guinea-pig lung were reversed in a dose-dependent fashion by prostacyclin. This ability of prostacyclin to physiologically antagonize contractions of the human basilar artery in vitro induced by high concentrations of various spasmogenic agents suggests that such a potent vasodilator agent or more stable analogue may be of value in the treatment of such disorders as cerebral arterial spasm following subarachnoid hemorrhage.


mBio ◽  
2010 ◽  
Vol 1 (4) ◽  
Author(s):  
Judith H. Merritt ◽  
Dae-Gon Ha ◽  
Kimberly N. Cowles ◽  
Wenyun Lu ◽  
Diana K. Morales ◽  
...  

ABSTRACT The signaling nucleotide cyclic diguanylate (c-di-GMP) regulates the transition between motile and sessile growth in a wide range of bacteria. Understanding how microbes control c-di-GMP metabolism to activate specific pathways is complicated by the apparent multifold redundancy of enzymes that synthesize and degrade this dinucleotide, and several models have been proposed to explain how bacteria coordinate the actions of these many enzymes. Here we report the identification of a diguanylate cyclase (DGC), RoeA, of Pseudomonas aeruginosa that promotes the production of extracellular polysaccharide (EPS) and contributes to biofilm formation, that is, the transition from planktonic to surface-dwelling cells. Our studies reveal that RoeA and the previously described DGC SadC make distinct contributions to biofilm formation, controlling polysaccharide production and flagellar motility, respectively. Measurement of total cellular levels of c-di-GMP in ∆roeA and ∆sadC mutants in two different genetic backgrounds revealed no correlation between levels of c-di-GMP and the observed phenotypic output with regard to swarming motility and EPS production. Our data strongly argue against a model wherein changes in total levels of c-di-GMP can account for the specific surface-related phenotypes of P. aeruginosa. IMPORTANCE A critical question in the study of cyclic diguanylate (c-di-GMP) signaling is how the bacterial cell integrates contributions of multiple c-di-GMP-metabolizing enzymes to mediate its cognate functional outputs. One leading model suggests that the effects of c-di-GMP must, in part, be localized subcellularly. The data presented here show that the phenotypes controlled by two different diguanylate cyclase (DGC) enzymes have discrete outputs despite the same total level of c-di-GMP. These data support and extend the model in which localized c-di-GMP signaling likely contributes to coordination of the action of the multiple proteins involved in the synthesis, degradation, and/or binding of this critical signal.


1992 ◽  
Vol 38 (8) ◽  
pp. 857-861 ◽  
Author(s):  
Michael F. Dunn ◽  
Arthur L. Karr

Thirty-four strains of Bradyrhizobium japonicum were screened for the in vitro production of an extracellular polysaccharide depolymerase active against the B. japonicum acidic extracellular polysaccharide that contains mannose, glucose, galactose, and 4-O-methylgalactose as neutral sugar components. Over 90% of tested strains producing this type of extracellular polysaccharide also produced the extracellular polysaccharide depolymerase, whereas strains producing a compositionally different extracellular polysaccharide did not. In addition, representatives of species related to B. japonicum by extracellular polysaccharide composition or host range were also phenotypically depolymerase negative. Depolymerase was also present in soybean root nodules formed by B. japonicum strain 2143. In contrast to the cell-associated depolymerase activity found in free-living cells of this strain, most of the depolymerase activity present in nodules is free of the bacteroids. The widespread occurrence of the depolymerase among B. japonicum strains and the spatiotemporal distribution of its activity in planta are consistent with the enzyme playing a role in the removal of surface extracellular polysaccharide from the microorganism during the infection of nodulation process. Key words: Bradyrhizobium japonicum, soybean, extracellular polysaccharides, extracellular polysaccharide depolymerase, bacteroids.


2013 ◽  
Vol 4 (4) ◽  
pp. 299-312 ◽  
Author(s):  
R. De Weirdt ◽  
E. Coenen ◽  
B. Vlaeminck ◽  
V. Fievez ◽  
P. Van den Abbeele ◽  
...  

Lactobacillus reuteri is a commensal, beneficial gut microbe that colonises the intestinal mucus layer, where it makes close contact with the human host and may significantly affect human health. Here, we investigated the capacity of linoleic acid (LA), the most common polyunsaturated fatty acid (PUFA) in a Western-style diet, to affect L. reuteri ATCC PTA 6475 prevalence and survival in a simulated mucus layer. Short-term (1 h) survival and mucin-agar adhesion assays of a log-phase L. reuteri suspension in intestinal water demonstrated that the simulated mucus layer protected L. reuteri against the inhibitory effects of LA by lowering its contact with the bacterial cell membrane. The protective effect of the simulated mucus layer was further evaluated using a more complex and dynamic model of the colon microbiota (SHIME®), in which L. reuteri survival was monitored during 6 days of daily exposure to LA in the absence (L-SHIME) and presence (M-SHIME) of a simulated mucus layer. After 6 days, luminal L- and M-SHIME L. reuteri plate counts had decreased by 3.1±0.5 and 2.6±0.9 log cfu/ml, respectively. Upon supplementation of 1.0 g/l LA, the decline in the luminal L. reuteri population started earlier than was observed for the control. In contrast, mucin-agar levels of L. reuteri (in the M-SHIME) remained unaffected throughout the experiment even in the presence of high concentrations of LA. Overall, the results of this study indicate the importance of the mucus layer as a protective environment for beneficial gut microbes to escape from stress by high loads of the antimicrobial PUFA LA to the colon, i.e. due to a Western-style diet.


2018 ◽  
Vol 201 (4) ◽  
Author(s):  
María F. Ballesteros ◽  
Mónica F. Torrez Lamberti ◽  
Juan V. Farizano ◽  
María M. Pescaretti ◽  
Mónica A. Delgado

ABSTRACTTheSalmonella entericaserovar Typhimurium RcsCDB system regulates the synthesis of colanic acid and the flagellum as well as the expression of virulence genes. We previously demonstrated that thercsC11mutant, which constitutively activates the RcsB regulator, attenuatesSalmonellavirulence in an animal model. This attenuated phenotype was also produced by deletion of theslyAgene. In this work, we investigated if this antagonistic behavior is produced by modulating the expression of both regulator-encoding genes. We demonstrated that SlyA overproduction negatively regulatesrcsBtranscription. A bioinformatics analysis enabled us to identify putative SlyA binding sites on both promoters, PrcsDBand PrcsB, which controlrcsBtranscriptional levels. We also determined that SlyA is able to recognize and bind to these predicted sites to modulate the activity of bothrcsBpromoters. According to these results, SlyA repressesrcsBtranscription by direct binding to specific sites located on thercsBpromoters, thus accounting for the attenuated/virulence antagonistic behaviors. Moreover, we showed that the opposite effect between both regulators also physiologically affects theSalmonellamotility phenotype. In this sense, we observed that under SlyA overproduction, PrcsBis repressed, and consequently, bacterial motility is increased. On the basis of these results, we suggest that during infection, the different RcsB levels produced act as a switch between the virulent and attenuated forms ofSalmonella. Thereby, we propose that higher concentrations of RcsB tilt the balance toward the attenuated form, while absence or low concentrations resulting from SlyA overproduction tilt the balance toward the virulent form.IMPORTANCEThe antagonistic behavior of RcsB and SlyA on virulence gene expression led us to hypothesize that there is interplay between both regulators in a regulatory network and these could be considered coordinators of this process. Here, we report that the SlyA virulence factor influences motility behavior by controllingrcsBtranscription from the PrcsBpromoter. We also demonstrate that SlyA negatively affects the expression of thercsBgene by direct binding to PrcsDBand PrcsBpromoters. We suggest that different levels of RcsB act as a switch between the virulent and attenuated forms ofSalmonella, where high concentrations of the regulator tend to tilt the balance toward the attenuated form and low concentrations or its absence tilt it toward the virulent form.


2018 ◽  
Vol 7 (18) ◽  
Author(s):  
Hugh M. B. Harris ◽  
Elisa C. Ale ◽  
Jorge A. Reinheimer ◽  
Ana G. Binetti ◽  
Paul W. O’Toole

Lactobacillus fermentum Lf2, an Argentine cheese isolate, can produce high concentrations of exopolysaccharides (EPS). These EPS were shown to improve the texture and rheology of yogurt, as well as to play a protective role in mice exposed to Salmonella enterica serovar Typhimurium.


2019 ◽  
Vol 8 (45) ◽  
Author(s):  
Marie-Josée H. Halsør ◽  
Anton Liaimer ◽  
Seila Pandur ◽  
Inger L. U. Ræder ◽  
Arne O. Smalås ◽  
...  

Nostoc sp. strain KVJ20 was isolated from the symbiotic organs of the liverwort Blasia pusilla. This cyanobacterium has been shown to have broad symbiotic competence, and bacterial extracts have inhibitory effects on cancer cell lines and microbes. An array of genes for the production of secondary metabolites is present.


2018 ◽  
Vol 62 (3) ◽  
Author(s):  
Nanbiao Long ◽  
Liping Zeng ◽  
Shanlei Qiao ◽  
Lei Li ◽  
Guowei Zhong

ABSTRACTAntifungal treatment is often ineffectual, partly because of biofilm formation. In this study, by using a combined forward and reverse genetic strategy, we identified that nucleus-localized AfSsn3 and its partner AfSsn8, which constitute a Cdk8-cyclin pair, are required for azole resistance inAspergillus fumigatus. Deletion ofAfssn3led to increased absorption and utilization of glucose and amino acids. Interestingly, absorption and utilization of glucose accelerated the extracellular polysaccharide formation, while utilization of the amino acids serine, threonine, and glycine increased sphingolipid pathway intermediate accumulation. In addition, the absence ofAfssn3induced the activity of the efflux pump proteins. These factors indicate the mature biofilm is responsible for the major mechanisms ofA. fumigatusresistance to azoles in the ΔAfssn3mutant. Collectively, the loss ofAfssn3led to two “barrier” layers between the intracellular and extracellular spaces, which consequently decreased drug penetration into the cell.


Sign in / Sign up

Export Citation Format

Share Document