scholarly journals The Interior Surfaces of Wooden Barrels Are an Additional Microbial Inoculation Source for Lambic Beer Production

2018 ◽  
Vol 85 (1) ◽  
Author(s):  
J. De Roos ◽  
D. Van der Veken ◽  
L. De Vuyst

ABSTRACTTraditional lambic beer production takes place through wort inoculation with environmental air and fermentation and maturation in wooden barrels. These wooden casks or foeders are possible additional inoculation sources of microorganisms for lambic worts. To date, however, these lambic barrels have been examined only with culture-dependent techniques, thereby missing a portion of the microorganisms present. Moreover, the effects of the cleaning procedures (involving high-pressure water and/or fumigation) and the barrel type on the microbial community structures of the interior surfaces of wooden lambic barrels were unclear. The culture-dependent plating and culture-independent amplicon sequencing of swab samples obtained from the interior surfaces of different wooden casks and foeders used for traditional lambic beer production in Belgium revealed that the microbial compositions of these surfaces differed statistically throughout the barrel-cleaning procedures applied. At the end of the cleaning procedures, amplicon sequencing still detected fermentation- and maturation-related microorganisms, although only a few colonies were still detectable using culture-dependent methods. It is possible that some of the surviving microorganisms were missed due to the presence of many of these cells in a viable but not culturable state and/or engrained deeper in the wood. These surviving microorganisms could act as an additional inoculation source, besides brewery air and brewery equipment, thereby helping to establish a stable microbial community in the wort to diminish batch-to-batch variations in fermentation profiles. Furthermore, the microbial compositions of the interior barrel surfaces differed statistically based on the barrel type, possibly reflecting different characteristics of the lambic barrels in terms of age, wood thickness, and wood porosity.IMPORTANCEAlthough the coolship step is generally regarded as the main contributor to the spontaneous inoculation by environmental air of fresh worts for lambic beer production, it is known that microorganisms often associate with specific surfaces present in a brewery. However, knowledge about the association of microorganisms with the interior surfaces of wooden lambic barrels is limited. To clarify the role of casks and foeders as additional microbial inoculation sources, it was important to determine the influence of the barrel characteristics and the cleaning procedures on the microbial communities of the interior barrel surfaces. Moreover, this helped to elucidate the complex spontaneous lambic beer fermentation and maturation process. It will allow further optimization of the lambic beer production process, as well as the wooden-barrel-cleaning procedures applied.

2021 ◽  
Vol 9 (8) ◽  
pp. 1642
Author(s):  
Dorothee Tegtmeier ◽  
Sabine Hurka ◽  
Sanja Mihajlovic ◽  
Maren Bodenschatz ◽  
Stephanie Schlimbach ◽  
...  

Black soldier fly larvae (BSFL) are fast-growing, resilient insects that can break down a variety of organic substrates and convert them into valuable proteins and lipids for applications in the feed industry. Decomposition is mediated by an abundant and versatile gut microbiome, which has been studied for more than a decade. However, little is known about the phylogeny, properties and functions of bacterial isolates from the BSFL gut. We therefore characterized the BSFL gut microbiome in detail, evaluating bacterial diversity by culture-dependent methods and amplicon sequencing of the 16S rRNA gene. Redundant strains were identified by genomic fingerprinting and 105 non-redundant isolates were then tested for their ability to inhibit pathogens. We cultivated representatives of 26 genera, covering 47% of the families and 33% of the genera detected by amplicon sequencing. Among these isolates, we found several representatives of the most abundant genera: Morganella, Enterococcus, Proteus and Providencia. We also isolated diverse members of the less-abundant phylum Actinobacteria, and a novel genus of the order Clostridiales. We found that 15 of the isolates inhibited at least one of the tested pathogens, suggesting a role in helping to prevent colonization by pathogens in the gut. The resulting culture collection of unique BSFL gut bacteria provides a promising resource for multiple industrial applications.


2020 ◽  
Vol 8 (7) ◽  
pp. 982
Author(s):  
Lucas von Gastrow ◽  
Marie-Noëlle Madec ◽  
Victoria Chuat ◽  
Stanislas Lubac ◽  
Clémence Morinière ◽  
...  

Gwell is a traditional mesophilic fermented milk from the Brittany region of France. The fermentation process is based on a back-slopping method. The starter is made from a portion of the previous Gwell production, so that Gwell is both the starter and final product for consumption. In a participatory research framework involving 13 producers, Gwell was characterized from both the sensory and microbial points of view and was defined by its tangy taste and smooth and dense texture. The microbial community of typical Gwell samples was studied using both culture-dependent and culture-independent approaches. Lactococcus lactis was systematically identified in Gwell, being represented by both subspecies cremoris and lactis biovar diacetylactis which were always associated. Geotrichum candidum was also found in all the samples. The microbial composition was confirmed by 16S and ITS2 metabarcoding analysis. We were able to reconstruct the history of Gwell exchanges between producers, and thus obtained the genealogy of the samples we analyzed. The samples clustered in two groups which were also differentiated by their microbial composition, and notably by the presence or absence of yeasts identified as Kazachstania servazii and Streptococcus species.


2016 ◽  
Vol 06 (03) ◽  
pp. 233-245 ◽  
Author(s):  
Karen Olsson-Francis ◽  
Victoria K. Pearson ◽  
Paul F. Schofield ◽  
Anna Oliver ◽  
Stephen Summers

2010 ◽  
Vol 76 (7) ◽  
pp. 2115-2121 ◽  
Author(s):  
Karen Olsson-Francis ◽  
Rosa de la Torre ◽  
Charles S. Cockell

ABSTRACT Many cyanobacteria are known to tolerate environmental extremes. Motivated by an interest in selecting cyanobacteria for applications in space, we launched rocks from a limestone cliff in Beer, Devon, United Kingdom, containing an epilithic and endolithic rock-dwelling community of cyanobacteria into low Earth orbit (LEO) at a height of approximately 300 kilometers. The community was exposed for 10 days to isolate cyanobacteria that can survive exposure to the extreme radiation and desiccating conditions associated with space. Culture-independent (16S rRNA) and culture-dependent methods showed that the cyanobacterial community was composed of Pleurocapsales, Oscillatoriales, and Chroococcales. A single cyanobacterium, a previously uncharacterized extremophile, was isolated after exposure to LEO. We were able to isolate the cyanobacterium from the limestone cliff after exposing the rock-dwelling community to desiccation and vacuum (0.7 � 10−3 kPa) in the laboratory. The ability of the organism to survive the conditions in space may be linked to the formation of dense colonies. These experiments show how extreme environmental conditions, including space, can be used to select for novel microorganisms. Furthermore, it improves our knowledge of environmental tolerances of extremophilic rock-dwelling cyanobacteria.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249261
Author(s):  
Sean A. Crowe ◽  
Rachel L. Simister ◽  
Jenifer S. Spence ◽  
Paul A. Kenward ◽  
Aaron C. Van Slyke ◽  
...  

Subclinical bacterial infections (biofilms) are strongly implicated in breast augmentation failure due to capsular contracture, and while these infections are generally ascribed to common skin commensals, this remains largely unsubstantiated through robust cultivation independent analyses. To determine capsule biofilm microbial community compositions, we employed amplicon sequencing of the 16S rRNA gene using DNA extracted from breast implant capsule samples. These cultivation independent analyses revealed that capsule associated biofilms are more diverse than canonical single-species infections, but have relatively low diversity (~ <100 species) compared to many host-associated microbial communities. In addition to taxa commonly associated with capsular contracture, the biofilms analyzed comprised a number of taxa that escaped detection in cultivation-dependent work. We have also isolated several key taxa identified through the culture-independent analyses. Together our analyses reveal that capsule biofilms are more diverse than cultivation studies suggest and can be heterogeneous within an individual capsule, between breasts of the same patient, across similar implant types, and over a range in severity of contracture. The complex nature of these communities requires further study across a broader suite of patients in addition to higher resolution analyses including metagenomics to better assess the fundamental role of microorganisms in capsular contracture.


Sign in / Sign up

Export Citation Format

Share Document