scholarly journals Novel Trifunctional Xylanolytic Enzyme Axy43A from Paenibacillus curdlanolyticus Strain B-6 Exhibiting Endo-Xylanase, β-d-Xylosidase, and Arabinoxylan Arabinofuranohydrolase Activities

2016 ◽  
Vol 82 (23) ◽  
pp. 6942-6951 ◽  
Author(s):  
Thitiporn Teeravivattanakit ◽  
Sirilak Baramee ◽  
Paripok Phitsuwan ◽  
Rattiya Waeonukul ◽  
Patthra Pason ◽  
...  

ABSTRACTTheaxy43Agene encoding the intracellular trifunctional xylanolytic enzyme fromPaenibacillus curdlanolyticusB-6 was cloned and expressed inEscherichia coli. Recombinant PcAxy43A consisting of a glycoside hydrolase family 43 and a family 6 carbohydrate-binding module exhibited endo-xylanase, β-xylosidase, and arabinoxylan arabinofuranohydrolase activities. PcAxy43A hydrolyzed xylohexaose and birch wood xylan to release a series of xylooligosaccharides, indicating that PcAxy43A contained endo-xylanase activity. PcAxy43A exhibited β-xylosidase activity toward a chromogenic substrate,p-nitrophenyl-β-d-xylopyranoside, and xylobiose, while it preferred to hydrolyze long-chain xylooligosaccharides rather than xylobiose. In addition, surprisingly, PcAxy43A showed arabinoxylan arabinofuranohydrolase activity; that is, it released arabinose from both singly and doubly arabinosylated xylose, α-l-Araf-(1→2)-d-Xylpor α-l-Araf-(1→3)-d-Xylpand α-l-Araf-(1→2)-[α-l-Araf-(1→3)]-β-d-Xylp. Moreover, the combination of PcAxy43A andP. curdlanolyticusB-6 endo-xylanase Xyn10C greatly improved the efficiency of xylose and arabinose production from the highly substituted rye arabinoxylan, suggesting that these two enzymes function synergistically to depolymerize arabinoxylan. Therefore, PcAxy43A has the potential for the saccharification of arabinoxylan into simple sugars for many applications.IMPORTANCEIn this study, the glycoside hydrolase 43 (GH43) intracellular multifunctional endo-xylanase, β-xylosidase, and arabinoxylan arabinofuranohydrolase (AXH) fromP. curdlanolyticusB-6 were characterized. Interestingly, PcAxy43A AXH showed a new property that acted on both the C(O)-2 and C(O)-3 positions of xylose residues doubly substituted with arabinosyl, which usually obstruct the action of xylanolytic enzymes. Furthermore, the studies here show interesting properties for the processing of xylans from cereal grains, particularly rye arabinoxylan, and show a novel relationship between PcAxy43A and endo-xylanase Xyn10C from strain B-6, providing novel metabolic potential for processing arabinoxylans into xylose and arabinose.


Author(s):  
Puangpen Limsakul ◽  
Paripok Phitsuwan ◽  
Rattiya Waeonukul ◽  
Patthra Pason ◽  
Chakrit Tachaapaikoon ◽  
...  

The PcAxy43B is a modular protein comprising a catalytic domain of glycoside hydrolase family 43 (GH43), a family 6 carbohydrate-binding module (CBM6) and a family 36 carbohydrate-binding module (CBM36) and found to be a novel multifunctional xylanolytic enzyme from Paenibacillus curdlanolyticus B-6. This enzyme exhibited α-L-arabinofuranosidase, endo-xylanase and β-D-xylosidase activities. α-L-Arabinofuranosidase of PcAxy43B revealed the new property of GH43, which released arabinose from the short-chain arabinoxylo-oligosaccharide (AXOS) and cereal arabinoxylan, and from both sides of the xylose residues of AXOS, which usually obstruct the action of xylanolytic enzymes. The PcAxy43B liberated series of xylo-oligosaccharides (XOSs) from birchwood xylan and xylohexaose, indicating that PcAxy43B exhibited endo-xylanase activity. The PcAxy43B produced xylose from xylobiose and reacted with p -nitrophenyl-β-D-xylopyranoside as a result of β-xylosidase activity. The PcAxy43B effectively released arabinose together with XOSs and xylose from the highly arabinosyl-substituted rye arabinoxylan. Moreover, PcAxy43B showed significant synergistic action with a trifunctional endo-xylanase/β-xylosidase/α-L-arabinofuranosidase PcAxy43A and an endo-xylanase Xyn10C from the strain B-6, in which almost all products produced from rye arabinoxylan by these combined enzymes were arabinose and xylose. In addition, the presence of CBM36 was found to be necessary for the endo-xylanase property of PcAxy43B. The PcAxy43B is capable of hydrolysing untreated cereal biomass, corn hull and rice straw into XOSs and xylose. Hence, PcAxy43B, the significant accessory multifunctional xylanolytic enzyme, is a potential candidate for application in the saccharification of cereal biomass. IMPORTANCE Enzymatic saccharification of cereal biomass is a strategy for the production of fermented sugars from low-price raw materials. In the present study, PcAxy43B from P. curdlanolyticus B-6 was found to be a novel multifunctional α-L-arabinofuranosidase/endo-xylanase/β-D-xylosidase enzyme of the glycoside hydrolase family 43. It is effective in releasing arabinose, xylose and XOSs from the highly arabinosyl-substituted rye arabinoxylan, which is usually resistant to hydrolysis by xylanolytic enzymes. Moreover, almost all products produced from rye arabinoxylan by the combination of PcAxy43B with trifunctional xylanolytic enzyme PcAxy43A and endo-xylanase Xyn10C from the strain B-6 were arabinose and xylose, which can be used to produce several value-added products. In addition, PcAxy43B is capable of hydrolysing untreated cereal biomass into XOSs and xylose. Thus, PcAxy43B is an important multifunctional xylanolytic enzyme with high potential in biotechnology.



2015 ◽  
Vol 81 (18) ◽  
pp. 6380-6392 ◽  
Author(s):  
Manuel Nieto-Domínguez ◽  
Laura I. de Eugenio ◽  
Jorge Barriuso ◽  
Alicia Prieto ◽  
Beatriz Fernández de Toro ◽  
...  

ABSTRACTThis paper reports on a novel β-xylosidase from the hemicellulolytic fungusTalaromyces amestolkiae. The expression of this enzyme, called BxTW1, could be induced by beechwood xylan and was purified as a glycoprotein from culture supernatants. We characterized the gene encoding this enzyme as an intronless gene belonging to the glycoside hydrolase gene family 3 (GH3). BxTW1 exhibited transxylosylation activity in a regioselective way. This feature would allow the synthesis of oligosaccharides or other compounds not available from natural sources, such as alkyl glycosides displaying antimicrobial or surfactant properties. Regioselective transxylosylation, an uncommon combination, makes the synthesis reproducible, which is desirable for its potential industrial application. BxTW1 showed high pH stability and Cu2+tolerance. The enzyme displayed a pI of 7.6, a molecular mass around 200 kDa in its active dimeric form, andKmandVmaxvalues of 0.17 mM and 52.0 U/mg, respectively, using commercialp-nitrophenyl-β-d-xylopyranoside as the substrate. The catalytic efficiencies for the hydrolysis of xylooligosaccharides were remarkably high, making it suitable for different applications in food and bioenergy industries.



2014 ◽  
Vol 80 (8) ◽  
pp. 2592-2601 ◽  
Author(s):  
Kundi Zhang ◽  
Xiaohua Chen ◽  
Wolfgang H. Schwarz ◽  
Fuli Li

ABSTRACTTwo cellulolytic thermophilic bacterial strains, CS-3-2 and CS-4-4, were isolated from decayed cornstalk by the addition of growth-supporting factors to the medium. According to 16S rRNA gene-sequencing results, these strains belonged to the genusClostridiumand showed 98.87% and 98.86% identity withClostridiumstercorariumsubsp.leptospartumATCC 35414TandClostridiumcellulosiAS 1.1777T, respectively. The endoglucanase and exoglucanase activities of strain CS-4-4 were approximately 3 to 5 times those of strain CS-3-2, whereas the β-glucosidase activity of strain CS-3-2 was 18 times higher than that of strain CS-4-4. The xylanase activity of strain CS-3-2 was 9 times that of strain CS-4-4, whereas the β-xylosidase activity of strain CS-4-4 was 27 times that of strain CS-3-2. The enzyme activities in spent cultures following cocultivation of the two strains with cornstalk as the substrate were much greater than those in pure cultures or an artificial mixture of samples, indicating synergism of glycoside hydrolase secretomes between the two strains. Quantitative measurement of the two strains in the cocultivation system indicated that strain CS-3-2 grew robustly during the initial stages, whereas strain CS-4-4 dominated the system in the late-exponential phase. Liquid chromatography-tandem mass spectrometry analysis of protein bands appearing in the native zymograms showed that ORF3880 and ORF3883 from strain CS-4-4 played key roles in the lignocellulose degradation process. Both these open reading frames (ORFs) exhibited endoglucanase and xylanase activities, but ORF3880 showed tighter adhesion to insoluble substrates at 4, 25, and 60°C owing to its five carbohydrate-binding modules (CBMs).



2009 ◽  
Vol 418 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Elien Vandermarliere ◽  
Tine M. Bourgois ◽  
Martyn D. Winn ◽  
Steven van Campenhout ◽  
Guido Volckaert ◽  
...  

AXHs (arabinoxylan arabinofuranohydrolases) are α-L-arabinofuranosidases that specifically hydrolyse the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl backbone residues of arabinoxylan. Bacillus subtilis was recently shown to produce an AXH that cleaves arabinose units from O-2- or O-3-mono-substituted xylose residues: BsAXH-m2,3 (B. subtilis AXH-m2,3). Crystallographic analysis reveals a two-domain structure for this enzyme: a catalytic domain displaying a five-bladed β-propeller fold characteristic of GH (glycoside hydrolase) family 43 and a CBM (carbohydrate-binding module) with a β-sandwich fold belonging to CBM family 6. Binding of substrate to BsAXH-m2,3 is largely based on hydrophobic stacking interactions, which probably allow the positional flexibility needed to hydrolyse both arabinose substituents at the O-2 or O-3 position of the xylose unit. Superposition of the BsAXH-m2,3 structure with known structures of the GH family 43 exo-acting enzymes, β-xylosidase and α-L-arabinanase, each in complex with their substrate, reveals a different orientation of the sugar backbone.



2018 ◽  
Vol 84 (23) ◽  
Author(s):  
Xiu-Lan Chen ◽  
Fang Zhao ◽  
Yong-Sheng Yue ◽  
Xi-Ying Zhang ◽  
Yu-Zhong Zhang ◽  
...  

ABSTRACT Xylanases play a crucial role in the degradation of xylan in both terrestrial and marine environments. The endoxylanase XynB from the marine bacterium Glaciecola mesophila KMM 241 is a modular enzyme comprising a long N-terminal domain (NTD) (E44 to T562) with xylan-binding ability and a catalytic domain (CD) (T563 to E912) of glycoside hydrolase family 8 (GH8). In this study, the long NTD is confirmed to contain three different functional regions, which are NTD1 (E44 to D136), NTD2 (Y137 to A193), and NTD3 (L194 to T562). NTD1, mainly composed of eight β-strands, functions as a new type of carbohydrate-binding module (CBM), which has xylan-binding ability but no sequence similarity to any known CBM. NTD2, mainly forming two α-helices, contains one of the α-helices of the catalytic domain's (α/α)6 barrel and therefore is essential for the activity of XynB, although it is far away from the catalytic domain in sequence. NTD3, next to the catalytic domain in sequence, is shown to be helpful in maintaining the thermostability of XynB. Thus, XynB represents a kind of xylanase with a new domain architecture. There are four other predicted glycoside hydrolase sequences with the same domain architecture and high sequence identity (≥80%) with XynB, all of which are from marine bacteria. Phylogenetic analysis shows that XynB and these homologs form a new group in GH8, representing a new class of marine bacterial xylanases. Our results shed light on xylanases, especially marine xylanases. IMPORTANCE Xylanases play a crucial role in natural xylan degradation and have been extensively used in industries such as food processing, animal feed, and kraft pulp biobleaching. Some marine bacteria have been found to secrete xylanases. Characterization of novel xylanases from marine bacteria has significance for both the clarification of xylan degradation mechanisms in the sea and the development of new enzymes for industrial application. With G. mesophila XynB as a representative, this study reveals a new group of the GH8 xylanases from marine bacteria, which have a distinct domain architecture and contain a novel carbohydrate-binding module. Thus, this study offers new knowledge on marine xylanases.



2012 ◽  
Vol 79 (3) ◽  
pp. 989-996 ◽  
Author(s):  
Fei Zheng ◽  
Shaojun Ding

ABSTRACTEG1 is a modular glycoside hydrolase family 5 endoglucanase fromVolvariella volvaceaconsisting of an N-terminal carbohydrate-binding module (CBM1) and a catalytic domain (CD). The ratios of soluble to insoluble reducing sugar produced from filter paper after 8 and 24 h of exposure to EG1 were 6.66 and 8.56, respectively, suggesting that it is a processive endoglucanase. Three derivatives of EG1 containing a core domain only or additional CBMs were constructed in order to evaluate the contribution of the CBM to the processivity and enzymatic mode of EG1 under stationary and agitated conditions. All four enzymatic forms exhibited the same mode of action on both soluble and insoluble cellulosic substrates with cellobiose as a main end product. An additional CBM fused at either the N or C terminus reduced specific activity toward soluble and insoluble celluloses under stationary reaction conditions. Deletion of the CBM significantly decreased enzyme processivity. Insertion of an additional CBM also resulted in a dramatic decrease in processivity in enzyme-substrate reaction mixtures incubated for 0.5 h, but this effect was reversed when reactions were allowed to proceed for longer periods (24 h). Further significant differences were observed in the substrate adsorption/desorption patterns of EG1 and enzyme derivatives equipped with an additional CBM under agitated reaction conditions. An additional family 1 CBM improved EG1 processivity on insoluble cellulose under highly agitated conditions. Our data indicate a strong link between high adsorption levels and low desorption levels in the processivity of EG1 and possibly other processive endoglucanses.



2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Mart Krupovic ◽  
Natalya Yutin ◽  
Eugene Koonin

Abstract The diverse viruses in the phylum Nucleocytoviricota (also known as NLCDVs, Nucleo-cytoplasmic Large DNA Viruses) typically possess large icosahedral virions. However, in several families of Nucleocytoviricota, the icosahedral capsid was replaced by irregular particle shapes, most notably, the amphora-like virions of pandoraviruses and pithoviruses, the largest known virus particles in the entire virosphere. Pandoraviruses appear to be the most highly derived viruses in this phylum because their evolution involved not only the change in the virion shape, but also, the actual loss of the gene encoding double-jelly roll major capsid protein (DJR MCP), the main building block of icosahedral capsids in this virus assemblage. Instead, pandoravirus virions are built of unrelated abundant proteins. Here we show that the second most abundant virion protein of pandoraviruses, major virion protein 2 (MVP2), evolved from an inactivated derivative of a bacterial glycoside hydrolase of the GH16 family. The ancestral form of MVP2 was apparently acquired early in the evolution of the Nucleocytoviricota, to become a minor virion protein. After a duplication in the common ancestor of pandoraviruses and molliviruses, one of the paralogs displaces DJR MCP in pandoraviruses, conceivably, opening the way for a major increase in the size of the virion and the genome. Exaptation of a carbohydrate-binding protein for the function of the MVP is a general trend in virus evolution and might underlie the transformation of the virion shape in other groups of the Nucleocytoviricota as well.



2016 ◽  
Vol 82 (14) ◽  
pp. 4340-4349 ◽  
Author(s):  
Damao Wang ◽  
Do Hyoung Kim ◽  
Nari Seo ◽  
Eun Ju Yun ◽  
Hyun Joo An ◽  
...  

ABSTRACTIn this study, we characterized Gly5M, originating from a marine bacterium, as a novel β-1,3-1,6-endoglucanase in glycoside hydrolase family 5 (GH5) in the Carbohydrate-Active enZyme database. Thegly5Mgene encodes Gly5M, a newly characterized enzyme from GH5 subfamily 47 (GH5_47) inSaccharophagus degradans2-40T. Thegly5Mgene was cloned and overexpressed inEscherichia coli. Through analysis of the enzymatic reaction products by thin-layer chromatography, high-performance liquid chromatography, and matrix-assisted laser desorption ionization–tandem time of flight mass spectrometry, Gly5M was identified as a novel β-1,3-endoglucanase (EC 3.2.1.39) and bacterial β-1,6-glucanase (EC 3.2.1.75) in GH5. The β-1,3-endoglucanase and β-1,6-endoglucanase activities were detected by using laminarin (a β-1,3-glucan with β-1,6-glycosidic linkages derived from brown macroalgae) and pustulan (a β-1,6-glucan derived from fungal cell walls) as the substrates, respectively. This enzyme also showed transglycosylase activity toward β-1,3-oligosaccharides when laminarioligosaccharides were used as the substrates. Since laminarin is the major form of glucan storage in brown macroalgae, Gly5M could be used to produce glucose and laminarioligosaccharides, using brown macroalgae, for industrial purposes.IMPORTANCEIn this study, we have discovered a novel β-1,3-1,6-endoglucanase with a unique transglycosylase activity, namely, Gly5M, from a marine bacterium,Saccharophagus degradans2-40T. Gly5M was identified as the newly found β-1,3-endoglucanase and bacterial β-1,6-glucanase in GH5. Gly5M is capable of cleaving glycosidic linkages of both β-1,3-glucans and β-1,6-glucans. Gly5M also possesses a transglycosylase activity toward β-1,3-oligosacchrides. Due to the broad specificity of Gly5M, this enzyme can be used to produce glucose or high-value β-1,3- and/or β-1,6-oligosaccharides.



2017 ◽  
Vol 83 (22) ◽  
Author(s):  
Thitiporn Teeravivattanakit ◽  
Sirilak Baramee ◽  
Paripok Phitsuwan ◽  
Somphit Sornyotha ◽  
Rattiya Waeonukul ◽  
...  

ABSTRACT Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii β-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment. IMPORTANCE Ongoing research is focused on improving “green” pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase from P. curdlanolyticus B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It demonstrates efficient synergism with endoxylanases PcXyn10C and PcXyn11A to depolymerize xylan in untreated rice straw and enhanced the xylose production and improved cellulose hydrolysis. Therefore, it can be considered an enzymatic pretreatment. Furthermore, the studies here show that glucose yield released from steam- and xylanolytic enzyme-treated rice straw by the combination of CtCel9R and TbCglT was higher than the glucose yield obtained from ammonia-treated rice straw saccharification. This work presents a novel environment-friendly xylanolytic enzyme pretreatment not only as a green pretreatment but also as an economically feasible biorefinery method.



Sign in / Sign up

Export Citation Format

Share Document