scholarly journals Quantification of Human Polyomaviruses JC Virus and BK Virus by TaqMan Quantitative PCR and Comparison to Other Water Quality Indicators in Water and Fecal Samples

2009 ◽  
Vol 75 (11) ◽  
pp. 3379-3388 ◽  
Author(s):  
Shannon M. McQuaig ◽  
Troy M. Scott ◽  
Jerzy O. Lukasik ◽  
John H. Paul ◽  
Valerie J. Harwood

ABSTRACT In the United States, total maximum daily load standards for bodies of water that do not meet bacterial water quality standards are set by each state. The presence of human polyomaviruses (HPyVs) can be used as an indicator of human-associated sewage pollution in these waters. We have developed and optimized a TaqMan quantitative PCR (QPCR) assay based on the conserved T antigen to both quantify and simultaneously detect two HPyVs; JC virus and BK virus. The QPCR assay was able to consistently quantify ≥10 gene copies per reaction and is linear over 5 orders of magnitude. HPyVs were consistently detected in human waste samples (57 of 64) and environmental waters with known human fecal contamination (5 of 5) and were not amplified in DNA extracted from 127 animal waste samples from 14 species. HPyV concentrations in sewage decreased 81.2 and 84.2% over 28 days incubation at 25 and 35°C, respectively. HPyVs results were compared to Escherichia coli, fecal coliform, and enterococci concentrations and the presence of three other human-associated microbes: Bacteroidetes, Methanobrevibacter smithii, and adenovirus. HPyVs were the most frequently detected of these in human and contaminated environmental samples and were more human specific than the Bacteroidetes (HF183) or M. smithii. HPyVs and M. smithii more closely mimicked the persistence of adenovirus in sewage than the other microbes. The use of this rapid and quantitative assay in water quality research could help regulatory agencies to identify sources of water pollution for improved remediation of contaminated waters and ultimately protect humans from exposure to pathogens.

2009 ◽  
Vol 83 (21) ◽  
pp. 10846-10856 ◽  
Author(s):  
Martyn K. White ◽  
Mahmut Safak ◽  
Kamel Khalili

ABSTRACT Polyomaviruses are a growing family of small DNA viruses with a narrow tropism for both the host species and the cell type in which they productively replicate. Species host range may be constrained by requirements for precise molecular interactions between the viral T antigen, host replication proteins, including DNA polymerase, and the viral origin of replication, which are required for viral DNA replication. Cell type specificity involves, at least in part, transcription factors that are necessary for viral gene expression and restricted in their tissue distribution. In the case of the human polyomaviruses, BK virus (BKV) replication occurs in the tubular epithelial cells of the kidney, causing nephropathy in kidney allograft recipients, while JC virus (JCV) replication occurs in the glial cells of the central nervous system, where it causes progressive multifocal leukoencephalopathy. Three new human polyomaviruses have recently been discovered: MCV was found in Merkel cell carcinoma samples, while Karolinska Institute Virus and Washington University Virus were isolated from the respiratory tract. We discuss control mechanisms for gene expression in primate polyomaviruses, including simian vacuolating virus 40, BKV, and JCV. These mechanisms include not only modulation of promoter activities by transcription factor binding but also enhancer rearrangements, restriction of DNA methylation, alternate early mRNA splicing, cis-acting elements in the late mRNA leader sequence, and the production of viral microRNA.


2001 ◽  
Vol 75 (21) ◽  
pp. 10290-10299 ◽  
Author(s):  
Sı́lvia Bofill-Mas ◽  
Meritxell Formiga-Cruz ◽  
Pilar Clemente-Casares ◽  
Francesc Calafell ◽  
Rosina Girones

ABSTRACT The mechanism of human-to-human transmission of the polyomaviruses JC virus (JCV) and BK virus (BKV) has not been firmly established with regard to possible human exposure. JCV and BKV have been found in sewage samples from different geographical areas in Europe, Africa, and the United States, with average concentrations of 102 to 103 JCV particles/ml and 101 to 102BKV particles/ml. Selected polyomavirus-positive sewage samples were further characterized. The JCV and BKV present in these samples were identified by sequencing of the intergenic region (the region found between the T antigen and VP coding regions) of JCV and the VP1 region of BKV. The regulatory region of the JCV and BKV strains found in sewage samples presented archetypal or archetype-like genetic structures, as described for urine samples. The stability (the time required for a 90% reduction in the virus concentration) of the viral particles in sewage at 20°C was estimated to be 26.7 days for JCV and 53.6 days for BKV. The presence of JCV in 50% of the shellfish samples analyzed confirmed the stability of these viral particles in the environment. BKV and JCV particles were also found to be stable at pH 5; however, treatment at a pH lower than 3 resulted in the detection of free viral DNA. Since most humans are infected with JCV and BKV, these data indicate that the ingestion of contaminated water or food could represent a possible portal of entrance of these viruses or polyomavirus DNA into the human population.


2009 ◽  
Vol 83 (11) ◽  
pp. 5630-5639 ◽  
Author(s):  
Edward C. Goodwin ◽  
Walter J. Atwood ◽  
Daniel DiMaio

ABSTRACT We developed a high-throughput, cell-based screen to identify chemicals that inhibit infection by the primate polyomaviruses. The screen is based on the detection of compounds that inhibit the ability of a replication-defective simian virus 40 (SV40)-based viral vector to cause growth arrest in HeLa cells by repressing the expression of the endogenous human papillomavirus E7 oncogene in these cells. We identified two compounds, ellagic acid and spiperone, that suppressed the ability of the SV40 recombinant virus to inhibit cellular DNA synthesis. These compounds caused a marked reduction of the ability of wild-type SV40 to productively infect permissive monkey cells, even when the compounds were added several hours after infection. The fraction of cells expressing SV40 large T antigen and the levels of T antigen mRNA were reduced in infected human and monkey cells treated with ellagic acid and spiperone, suggesting that these compounds block a step in the virus life cycle prior to SV40 early gene expression. Ellagic acid and spiperone also inhibited large T antigen expression by BK virus and JC virus, two important, pathogenic human polyomaviruses.


2020 ◽  
Vol 68 (5) ◽  
pp. 319-325 ◽  
Author(s):  
Francesca Costigliolo ◽  
Kara Lombardo ◽  
Lois J. Arend ◽  
Avi Z. Rosenberg ◽  
Andres Matoso ◽  
...  

BK polyomavirus–associated nephropathy (BKpyVAN) remains a cause of graft loss in kidney transplant recipients on immunosuppressive therapy. Its diagnosis relies on the identification of BK virus (BKV) in the renal allograft biopsy by positive immunohistochemical (IHC) stain for the viral SV40 large T antigen, although in situ hybridization (ISH) for viral DNA is used in some centers. We examined tissue detection of BKV RNA by RNAscope, a novel, automated ISH test, in 61 allograft biopsies from 56 patients with BKpyVAN. We found good correlation between the estimate of BKV tissue load by RNAscope ISH and SV40 IHC ( R2 = 0.65, p<0.0001). RNAscope ISH showed 88% sensitivity and 79% specificity and, as an alternative test, could confirm the presence of BKV tissue in presumed BKpyVAN and rule out BKV as the causative agent in JC virus nephropathy. We also used tissue BK viral load estimates by both RNAscope ISH and SV40 IHC to examine the relation between tissue and plasma BK levels and found significant correlation only between BK viremia and tissue BK measured by RNAscope ISH. Our findings suggest that the RNAscope ISH assay could be a reliable test for BKV detection in allograft biopsies.


2006 ◽  
Vol 87 (10) ◽  
pp. 2951-2960 ◽  
Author(s):  
Jongming Li ◽  
Jos Melenhorst ◽  
Nancy Hensel ◽  
Katyoun Rezvani ◽  
Giuseppe Sconocchia ◽  
...  

Infection with BK virus (BKV) induces both humoral and cellular immunity, but the viral antigens of T-antigen (T-ag) stimulating T-cell responses are largely unknown. To identify BKV-specific T cells in healthy individuals, peripheral blood lymphocytes were cultured with autologous dendritic cells (DCs) loaded with BKV lysate and T cells were screened for intracellular gamma interferon production after stimulation with an overlapping 15mer peptide library of the BKV T-ag. Among many immunogenic peptides identified, four T-ag peptides were identified as candidate major histocompatibility complex class I and II T-cell epitopes, restricted to human leukocyte antigen (HLA)-B*0702, -B*08, -DRB1*0301 and -DRB1*0901. Further, a candidate 9mer peptide, LPLMRKAYL, was confirmed to be restricted to HLA-B*0702 and -B*08. Because the polyomaviruses BKV, JC virus (JCV) and Simian virus 40 (SV40) share extensive sequence similarity in the immunogenic proteins T-ag and VP1, it was hypothesized that, in humans, these proteins contain conserved cytotoxic T-lymphocyte (CTL) target epitopes. Four HLA-restricted conserved epitopes of BKV, JCV and SV40 were identified: HLA-B*07, -B*08 and -DRB1*0901 for T-ag and -A*0201 for VP1. T cells cultured in vitro that were specific for one viral antigen recognized other conserved epitopes. CTLs generated from BKV T-ag and VP1 peptide were cytotoxic to DC targets pulsed with either BKV or JCV. Therefore, infection by one of the two viruses (BKV and JCV) could establish cross-immunity against the other. Although cross-cytotoxicity experiments were not performed with SV40, cross-recognition data from conserved antigen epitopes of polyomaviruses suggest strongly that cross-immunity might also exist among the three viruses.


2007 ◽  
Vol 82 (6) ◽  
pp. 2705-2714 ◽  
Author(s):  
Dweepanita Das ◽  
Kirk Wojno ◽  
Michael J. Imperiale

ABSTRACT Prostate cancer has been projected to cause almost 10% of all male cancer deaths in the United States in 2007. The incidence of mutations in the tumor suppressor genes Rb1 and p53, especially in the early stages of the disease, is low compared to those for other cancers. This has led to the hypothesis that a human virus such as BK virus (BKV), which establishes a persistent subclinical infection in the urinary tract and encodes oncoproteins that interfere with these tumor suppressor pathways, is involved. Previously, we detected BKV DNA in the epithelial cells of benign and proliferative inflammatory atrophy ducts of cancerous prostate specimens. In the present report, we demonstrate that BKV is present at a much lower frequency in noncancerous prostates. Additionally, in normal prostates, T-antigen (TAg) expression is observed only in specimens harboring proliferative inflammatory atrophy and prostatic intraepithelial neoplasia. We further demonstrate that the p53 gene from atrophic cells expressing TAg is wild type, whereas tumor cells expressing detectable nuclear p53 contain a mix of wild-type and mutant p53 genes, suggesting that TAg may inactivate p53 in the atrophic cells. Our results point toward a role for BKV in early prostate cancer progression.


1980 ◽  
Vol 52 (3) ◽  
pp. 367-370 ◽  
Author(s):  
Hideyuki Kosaka ◽  
Yoshinori Sano ◽  
Yasuhiko Matsukado ◽  
Takeshi Sairenji ◽  
Yorio Hinuma

✓ To probe the possible presence of papovavirus-related T antigen(s) in human brain tumors, the imprinted or cultured cells at various passage levels were examined by anticomplement immunofluorescence using antisera to T antigen of each BK virus, JC virus, and simian virus 40. No T antigen was demonstrated in any tests with cells derived from 69 patients with various brain tumors. Twenty-two tumor cell strains cultured in the presence of a tumor promoter, phorbol ester, also failed to show the T antigen.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Ugo Moens ◽  
Maria Ludvigsen ◽  
Marijke Van Ghelue

Polyomaviruses are a family of small, nonenveloped viruses with a circular double-stranded DNA genome of ∼5,000 base pairs protected by an icosahedral protein structure. So far, members of this family have been identified in birds and mammals. Until 2006, BK virus (BKV), JC virus (JCV), and simian virus 40 (SV40) were the only polyomaviruses known to circulate in the human population. Their occurrence in individuals was mainly confirmed by PCR and the presence of virus-specific antibodies. Using the same methods, lymphotropic polyomavirus, originally isolated in monkeys, was recently shown to be present in healthy individuals although with much lower incidence than BKV, JCV, and SV40. The use of advanced high-throughput sequencing and improved rolling circle amplification techniques have identified the novel human polyomaviruses KI, WU, Merkel cell polyomavirus, HPyV6, HPyV7, trichodysplasia spinulosa-associated polyomavirus, and HPyV9. The skin tropism of human polyomaviruses and their dermatopathologic potentials are the focus of this paper.


Sign in / Sign up

Export Citation Format

Share Document