scholarly journals Engineered Escherichia coli with Periplasmic Carbonic Anhydrase as a Biocatalyst for CO2Sequestration

2013 ◽  
Vol 79 (21) ◽  
pp. 6697-6705 ◽  
Author(s):  
Byung Hoon Jo ◽  
Im Gyu Kim ◽  
Jeong Hyun Seo ◽  
Dong Gyun Kang ◽  
Hyung Joon Cha

ABSTRACTCarbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase fromNeisseria gonorrhoeae(ngCA) in the periplasm ofEscherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2sequestration by mineral carbonation, a process with the potential to store large quantities of CO2.ngCA was highly expressed in the periplasm ofE. coliin a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2compared with its cytoplasmicngCA counterpart and previously reported whole-cell CA systems. The expression ofngCA in the periplasm ofE. coligreatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmicngCA can successfully serve as an efficient biocatalyst for CO2sequestration.

EcoSal Plus ◽  
2021 ◽  
Author(s):  
Petra Anne Levin ◽  
Anuradha Janakiraman

Decades of research, much of it in Escherichia coli , have yielded a wealth of insight into bacterial cell division. Here, we provide an overview of the E. coli division machinery with an emphasis on recent findings.


2016 ◽  
Vol 198 (11) ◽  
pp. 1683-1693 ◽  
Author(s):  
Elyse J. Roach ◽  
Charles Wroblewski ◽  
Laura Seidel ◽  
Alison M. Berezuk ◽  
Dyanne Brewer ◽  
...  

ABSTRACTBacterial cell division is an essential and highly coordinated process. It requires the polymerization of the tubulin homologue FtsZ to form a dynamic ring (Z-ring) at midcell. Z-ring formation relies on a group of FtsZ-associatedproteins (Zap) for stability throughout the process of division. InEscherichia coli, there are currently five Zap proteins (ZapA through ZapE), of which four (ZapA, ZapB, ZapC, and ZapD) are small soluble proteins that act to bind and bundle FtsZ filaments. In particular, ZapD forms a functional dimer and interacts with the C-terminal tail of FtsZ, but little is known about its structure and mechanism of action. Here, we present the crystal structure ofEscherichia coliZapD and show it forms a symmetrical dimer with centrally located α-helices flanked by β-sheet domains. Based on the structure of ZapD and its chemical cross-linking to FtsZ, we targeted nine charged ZapD residues for modification by site-directed mutagenesis. Usingin vitroFtsZ sedimentation assays, we show that residues R56, R221, and R225 are important for bundling FtsZ filaments, while transmission electron microscopy revealed that altering these residues results in different FtsZ bundle morphology compared to those of filaments bundled with wild-type ZapD. ZapD residue R116 also showed altered FtsZ bundle morphology but levels of FtsZ bundling similar to that of wild-type ZapD. Together, these results reveal that ZapD residues R116, R221, and R225 likely participate in forming a positively charged binding pocket that is critical for bundling FtsZ filaments.IMPORTANCEZ-ring assembly underpins the formation of the essential cell division complex known as the divisome and is required for recruitment of downstream cell division proteins. ZapD is one of several proteins inE. colithat associates with the Z-ring to promote FtsZ bundling and aids in the overall fitness of the division process. In the present study, we describe the dimeric structure ofE. coliZapD and identify residues that are critical for FtsZ bundling. Together, these results advance our understanding about the formation and dynamics of the Z-ring prior to bacterial cell division.


2013 ◽  
Vol 79 (22) ◽  
pp. 7091-7100
Author(s):  
Yali Xu ◽  
Stephan Grosse ◽  
Hiroaki Iwaki ◽  
Yoshie Hasegawa ◽  
Peter C. K. Lau

ABSTRACTThere are few entries of carbon-carbon bond hydrolases (EC 3.7.1.-) in the ExPASy database. In microbes, these enzymes play an essential role in the metabolism of alicyclic or aromatic compounds as part of the global carbon cycle. CpdC is a ω-pentadecalactone hydrolase derived from the degradation pathway of cyclopentadecanol or cyclopentadecanone byPseudomonassp. strain HI-70. CpdC was purified to homogeneity and characterized. It is active as a dimer of 56,000 Da with a subunit molecular mass of 33,349. Although CpdC has the highest activity and reaction rate (kcat) toward ω-pentadecalactone, its catalytic efficiency favors lauryl lactone as a substrate. The melting temperature (Tm) of CpdC was estimated to be 50.9 ± 0.1°C. The half-life of CpdC at 35°C is several days. By virtue of its high level of expression inEscherichia coli, the intact CpdC-encoding gene and progressive 3′-end deletions were employed in the construction of a series of fusion plasmid system. Although we found them in inclusion bodies, proof-of-concept of overproduction of three microbial cutinases of which the genes were otherwise expressed poorly or not at all inE. coliwas demonstrated. On the other hand, two antigenic proteins, azurin and MPT63, were readily produced in soluble form.


2020 ◽  
Vol 202 (23) ◽  
Author(s):  
Atsushi Yahashiri ◽  
Jill T. Babor ◽  
Ariel L. Anwar ◽  
Ryan P. Bezy ◽  
Evan W. Piette ◽  
...  

ABSTRACT We report that the small Escherichia coli membrane protein DrpB (formerly YedR) is involved in cell division. We discovered DrpB in a screen for multicopy suppressors of a ΔftsEX mutation that prevents divisome assembly when cells are plated on low ionic strength medium, such as lysogeny broth without NaCl. Characterization of DrpB revealed that (i) translation initiates at an ATG annotated as codon 22 rather than the GTG annotated as codon 1, (ii) DrpB localizes to the septal ring when cells are grown in medium of low ionic strength but localization is greatly reduced in medium of high ionic strength, (iii) overproduction of DrpB in a ΔftsEX mutant background improves recruitment of the septal peptidoglycan synthase FtsI, implying multicopy suppression works by rescuing septal ring assembly, (iv) a ΔdrpB mutant divides quite normally, but a ΔdrpB ΔdedD double mutant has a strong division and viability defect, albeit only in medium of high ionic strength, and (v) DrpB homologs are found in E. coli and a few closely related enteric bacteria, but not outside this group. In sum, DrpB is a poorly conserved nonessential division protein that improves the efficiency of cytokinesis under suboptimal conditions. Proteins like DrpB are likely to be a widespread feature of the bacterial cell division apparatus, but they are easily overlooked because mutants lack obvious shape defects. IMPORTANCE A thorough understanding of bacterial cell division requires identifying and characterizing all of the proteins that participate in this process. Our discovery of DrpB brings us one step closer to this goal in E. coli.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher J. Day ◽  
Alvin W. Lo ◽  
Lauren E. Hartley-Tassell ◽  
M. Pilar Argente ◽  
Jessica Poole ◽  
...  

ABSTRACT Chaperone-usher (CU) fimbriae are the most abundant Gram-negative bacterial fimbriae, with 38 distinct CU fimbria types described in Escherichia coli alone. Some E. coli CU fimbriae have been well characterized and bind to specific glycan targets to confer tissue tropism. For example, type 1 fimbriae bind to α-d-mannosylated glycoproteins such as uroplakins in the bladder via their tip-located FimH adhesin, leading to colonization and invasion of the bladder epithelium. Despite this, the receptor-binding affinity of many other E. coli CU fimbria types remains poorly characterized. Here, we used a recombinant E. coli strain expressing different CU fimbriae, in conjunction with glycan array analysis comprising >300 glycans, to dissect CU fimbria receptor specificity. We initially validated the approach by demonstrating the purified FimH lectin-binding domain and recombinant E. coli expressing type 1 fimbriae bound to a similar set of glycans. This technique was then used to map the glycan binding affinity of six additional CU fimbriae, namely, P, F1C, Yqi, Mat/Ecp, K88, and K99 fimbriae. The binding affinity was determined using whole-bacterial-cell surface plasmon resonance. This work describes new information in fimbrial specificity and a rapid and scalable system to define novel adhesin-glycan interactions that underpin bacterial colonization and disease. IMPORTANCE Understanding the tropism of pathogens for host and tissue requires a complete understanding of the host receptors targeted by fimbrial adhesins. Furthermore, blocking adhesion is a promising strategy to counter increasing antibiotic resistance and is enabled by the identification of host receptors. Here, we use a defined E. coli heterologous expression system to identify glycan receptors for six chaperone-usher fimbriae and identify novel receptors that are consistent with their known function. The same system was used to measure the kinetics of binding to the identified glycan, wherein bacterial cells were immobilized onto a biosensor chip and the interactions with glycans were quantified by surface plasmon resonance. This novel, dual-level analysis, where screening for the repertoire of glycan binding and the hierarchy of affinity of the identified ligands is determined directly from a natively expressed fimbrial structure on the bacterial cell surface, is superior in both throughput and biological relevance.


2012 ◽  
Vol 78 (15) ◽  
pp. 5238-5246 ◽  
Author(s):  
Dongfei Han ◽  
Ji-Young Ryu ◽  
Robert A. Kanaly ◽  
Hor-Gil Hur

ABSTRACTA plasmid, pTA163, inEscherichia colicontained an approximately 34-kb gene fragment fromPseudomonas putidaJYR-1 that included the genes responsible for the metabolism oftrans-anethole to protocatechuic acid. Three Tn5-disrupted open reading frame 10 (ORF 10) mutants of plasmid pTA163 lost their abilities to catalyzetrans-anethole. Heterologously expressed ORF 10 (1,047 nucleotides [nt]) under a T7 promoter inE. colicatalyzed oxidative cleavage of a propenyl group oftrans-anethole to an aldehyde group, resulting in the production ofpara-anisaldehyde, and this gene was designatedtao(trans-anetholeoxygenase). The deduced amino acid sequence of TAO had the highest identity (34%) to a hypothetical protein ofAgrobacterium vitisS4 and likely contained a flavin-binding site. Preferred incorporation of an oxygen molecule from water intop-anisaldehyde using18O-labeling experiments indicated stereo preference of TAO for hydrolysis of the epoxide group. Interestingly, unlike the narrow substrate range of isoeugenol monooxygenase fromPseudomonas putidaIE27 andPseudomonas nitroreducensJin1, TAO fromP. putidaJYR-1 catalyzed isoeugenol,O-methyl isoeugenol, and isosafrole, all of which contain the 2-propenyl functional group on the aromatic ring structure. Addition of NAD(P)H to the ultrafiltered cell extracts ofE. coli(pTA163) increased the activity of TAO. Due to the relaxed substrate range of TAO, it may be utilized for the production of various fragrance compounds from plant phenylpropanoids in the future.


2012 ◽  
Vol 79 (1) ◽  
pp. 411-414 ◽  
Author(s):  
Afonso G. Abreu ◽  
Vanessa Bueris ◽  
Tatiane M. Porangaba ◽  
Marcelo P. Sircili ◽  
Fernando Navarro-Garcia ◽  
...  

ABSTRACTAutotransporter (AT) protein-encoding genes of diarrheagenicEscherichia coli(DEC) pathotypes (cah,eatA,ehaABCDJ,espC,espI,espP,pet,pic,sat, andtibA) were detected in typical and atypical enteropathogenicE. coli(EPEC) in frequencies between 0.8% and 39.3%. Although these ATs have been described in particular DEC pathotypes, their presence in EPEC indicates that they should not be considered specific virulence markers.


2016 ◽  
Vol 60 (10) ◽  
pp. 5995-6002 ◽  
Author(s):  
Kristin R. Baker ◽  
Bimal Jana ◽  
Henrik Franzyk ◽  
Luca Guardabassi

ABSTRACTThe envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measureEscherichia colienvelope permeability to a β-galactosidase chromogenic substrate. The signal produced by cytoplasmic β-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds andE. coligene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinctE. colistrains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 μM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R> 0.5 μg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Christopher W. Lennon ◽  
Kimberly C. Lemmer ◽  
Jessica L. Irons ◽  
Max I. Sellman ◽  
Timothy J. Donohue ◽  
...  

ABSTRACTDksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the “stringent response” to nutrient starvation in the gammaproteobacteriumEscherichia coliand for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly relatedRhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length toE. coliDksA but lacks the Zn finger motif of theE. coliDksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of anE. colistrain lacking thedksAgene and modulates transcriptionin vitrowithE. coliRNA polymerase (RNAP) similarly toE. coliDksA. RSP2654 reduces RNAP-promoter complex stabilityin vitrowith RNAPs fromE. coliorR. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity toE. coliDksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsphas distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp.IMPORTANCEThe role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis inRhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.


2011 ◽  
Vol 55 (5) ◽  
pp. 2438-2441 ◽  
Author(s):  
Zeynep Baharoglu ◽  
Didier Mazel

ABSTRACTAntibiotic resistance development has been linked to the bacterial SOS stress response. InEscherichia coli, fluoroquinolones are known to induce SOS, whereas other antibiotics, such as aminoglycosides, tetracycline, and chloramphenicol, do not. Here we address whether various antibiotics induce SOS inVibrio cholerae. Reporter green fluorescent protein (GFP) fusions were used to measure the response of SOS-regulated promoters to subinhibitory concentrations of antibiotics. We show that unlike the situation withE. coli, all these antibiotics induce SOS inV. cholerae.


Sign in / Sign up

Export Citation Format

Share Document