scholarly journals The Entner-Doudoroff Pathway is an Essential Metabolic Route for Methylotuvimicrobium buryatense 5GB1C

Author(s):  
Lian He ◽  
Joseph D. Groom ◽  
Mary E. Lidstrom

Methylotuvimicrobium buryatense 5GB1C, a fast-growing gammaproteobacterial methanotroph, is equipped with two glycolytic pathways: the Entner-Doudoroff (ED) pathway and the Embden-Meyerhof-Parnas (EMP) pathway. Metabolic flux analysis and 13C labeling experiments have shown the EMP pathway is the principle glycolytic route in M. buryatense 5GB1C, while the ED pathway appears to be metabolically and energetically insignificant. However, it has not been possible to obtain null mutant in the edd-eda genes encoding the two unique enzymatic reactions in the ED pathway, suggesting the ED pathway may be essential for M. buryatense 5GB1C growth. In this study, the inducible PBAD promoter was used to manipulate gene expression of edd-eda, and in addition, the expression of these two genes was separated from that of a downstream gltA gene. The resulting strain shows arabinose-dependent growth that correlates with ED pathway activity, with normal growth achieved in the presence of ∼0.1 g/liter arabinose. Flux balance analysis shows that M. buryatense 5GB1C with a strong ED pathway has a reduced energy budget, thereby limiting the mutant growth at a high concentration of arabinose. Collectively, our study demonstrates that the ED pathway is essential for M. buryatense 5GB1C. However, no known mechanism can directly explain the essentiality of the ED pathway, and thus it may have a yet unknown regulatory role required for sustaining a healthy and functional metabolism in this bacterium. IMPORTANCE The gammaproteobacterial methanotrophs possess a unique central metabolic architecture, where methane and other reduced C1 carbon sources are assimilated through the ribulose monophosphate cycle. Although efforts have been made to better understand methanotrophic metabolism in these bacteria via experimental and computational approaches, many questions remain unanswered. One of these is the essentiality of the ED pathway for M. buryatense 5GB1C, as current results appear contradictory. By creating a construct with edd-eda and gltA genes controlled by PBAD and PJ23101, respectively, we demonstrated the essentiality of the ED pathway for this obligate methanotroph. It is also demonstrated that these genetic tools are applicable to M. buryatense 5GB1C and that expression of the target genes can be tightly controlled across an extensive range. Our study adds to the expanding knowledge of methanotrophic metabolism and practical approaches to genetic manipulation for obligate methanotrophs.

2020 ◽  
Author(s):  
Claudio Tomi-Andrino ◽  
Rupert Norman ◽  
Thomas Millat ◽  
Philippe Soucaille ◽  
Klaus Winzer ◽  
...  

AbstractMetabolic engineering in the post-genomic era is characterised by the development of new methods for metabolomics and fluxomics, supported by the integration of genetic engineering tools and mathematical modelling. Particularly, constraint-based stoichiometric models have been widely studied: (i) flux balance analysis (FBA) (in silico), and (ii) metabolic flux analysis (MFA) (in vivo). Recent studies have enabled the incorporation of thermodynamics and metabolomics data to improve the predictive capabilities of these approaches. However, an in-depth comparison and evaluation of these methods is lacking. This study presents a thorough analysis of two different in silico methods tested against experimental data (metabolomics and 13C-MFA) for the mesophile Escherichia coli. In particular, a modified version of the recently published matTFA toolbox was created, providing a broader range of physicochemical parameters. Validating against experimental data allowed the determination of the best physicochemical parameters to perform the TFA (Thermodynamics-based Flux Analysis). An analysis of flux pattern changes in the central carbon metabolism between 13C-MFA and TFA highlighted the limited capabilities of both approaches for elucidating the anaplerotic fluxes. In addition, a method based on centrality measures was suggested to identify important metabolites that (if quantified) would allow to further constrain the TFA. Finally, this study emphasised the need for standardisation in the fluxomics community: novel approaches are frequently released but a thorough comparison with currently accepted methods is not always performed.Author summaryBiotechnology has benefitted from the development of high throughput methods characterising living systems at different levels (e.g. concerning genes or proteins), allowing the industrial production of chemical commodities. Recently, focus has been placed on determining reaction rates (or metabolic fluxes) in the metabolic network of certain microorganisms, in order to identify bottlenecks hindering their exploitation. Two main approaches are commonly used, termed metabolic flux analysis (MFA) and flux balance analysis (FBA), based on measuring and estimating fluxes, respectively. While the influence of thermodynamics in living systems was accepted several decades ago, its application to study biochemical networks has only recently been enabled. In this sense, a multitude of different approaches constraining well-established modelling methods with thermodynamics has been suggested. However, physicochemical parameters are generally not properly adjusted to the experimental conditions, which might affect their predictive capabilities. In this study, we have explored the reliability of currently available tools by investigating the impact of varying said parameters in the simulation of metabolic fluxes and metabolite concentration values. Additionally, our in-depth analysis allowed us to highlight limitations and potential solutions that should be considered in future studies.


2007 ◽  
Vol 73 (14) ◽  
pp. 4639-4647 ◽  
Author(s):  
Qiang Hua ◽  
Andrew R. Joyce ◽  
Bernhard Ø. Palsson ◽  
Stephen S. Fong

ABSTRACT In comparison with intensive studies of genetic mechanisms related to biological evolutionary systems, much less analysis has been conducted on metabolic network responses to adaptive evolution that are directly associated with evolved metabolic phenotypes. Metabolic mechanisms involved in laboratory evolution of Escherichia coli on gluconeogenic carbon sources, such as lactate, were studied based on intracellular flux states determined from 13C tracer experiments and 13C-constrained flux analysis. At the end point of laboratory evolution, strains exhibited a more than doubling of the average growth rate and a 50% increase in the average biomass yield. Despite different evolutionary trajectories among parallel evolved populations, most improvements were obtained within the first 250 generations of evolution and were generally characterized by a significant increase in pathway capacity. Partitioning between gluconeogenic and pyruvate catabolic flux at the pyruvate node remained almost unchanged, while flux distributions around the key metabolites phosphoenolpyruvate, oxaloacetate, and acetyl-coenzyme A were relatively flexible over the course of evolution on lactate to meet energetic and anabolic demands during rapid growth on this gluconeogenic carbon substrate. There were no clear qualitative correlations between most transcriptional expression and metabolic flux changes, suggesting complex regulatory mechanisms at multiple levels of genetics and molecular biology. Moreover, higher fitness gains for cell growth on both evolutionary and alternative carbon sources were found for strains that adaptively evolved on gluconeogenic carbon sources compared to those that evolved on glucose. These results provide a novel systematic view of the mechanisms underlying microbial adaptation to growth on a gluconeogenic substrate.


2019 ◽  
Vol 31 (1) ◽  
pp. 159
Author(s):  
J. Chung ◽  
R. Clifford ◽  
G. Sriram ◽  
C. Keefer

Embryo quality and maternal recognition are crucial for successful initiation of bovine pregnancy. Previous studies have proposed that better quality embryos use aerobic glycolysis to meet a high demand for biomass components. While hexoses are the principal carbon sources that provide energy to glycolysis, little is known about partitioning of hexoses into metabolic pathways or alteration of partitioning when different hexoses are simultaneously available. Specific metabolic utilisation of 13C-labelled substrates can be quantified by gas chromatography-mass spectrometry, an excellent noninvasive approach for studying cellular metabolism. To assess hexose flux through central metabolism, bovine blastocysts and CT1 cells (a bovine trophectoderm cell line) were cultured in SOF-based media supplemented with combinations of 50% uniformly labelled (U) and 50% naturally abundant (NA) glucose (Glc) or fructose (Fru) (U−13C Glc+NA Glc, U−13C Fru+NA Fru, U−13C Glc+NA Fru, and U−13C Fru+NA Glc), such that total hexose concentration was 1.5mM. Metabolites in spent media from 24-h cultures of single or 5 blastocysts (40-μL drops; 5% CO2, 5% O2, 90% N2) and 1-, 2-, 3-, 6-, 8-, and 24-h incubations of CT1 cells (150 μL; ~3×104 cells per well; 5% CO2, 95% air) were extracted with a MeOH-CHCl3 reagent, derivatized, and analysed by gas chromatography-mass spectrometry. Measurement of mass isotopomer distributions of metabolites, chiefly pyruvate, lactate, and amino acids, followed by correction for natural abundances and metabolic modelling, revealed several insights. For instance, five Day 7 or Day 8 blastocysts (Day 0=fertilization) supplied with U−13C Glc+NA Fru displayed 13C enrichments of 80.3%±1.4% for pyruvate and 71.6%±2.8% for lactate, whereas when supplied with U−13C Fru+NA Glc, they displayed lower 13C enrichments of 5.7%±2.4% for pyruvate and 2.8%±0.4% lactate (mean±standard deviation, n=3 to 4). Metabolic modelling revealed that when Glc and Fru are simultaneously available, the blastocysts used 2.5±0.2 moles of Fru per 100 moles of Glc used. Furthermore, 13C enrichment of pyruvate was 42.0±0.6% when U−13C Glc+NA Glc was supplied and 37.8±2.7% when U−13C Fru+NA Fru was supplied. Lactate enrichments followed a similar trend. This indicates that, individually, Glc and Fru were utilised majorly through aerobic glycolysis with some involvement of the pentose phosphate pathway. Alanine was negligibly labelled in all of the experiments, suggesting either a low TCA flux or that alanine is diluted by extra- or intracellular amino or fatty acids. Single blastocysts and CT1 cells showed a similar labelling pattern when hexoses were available. Following Glc depletion at 8h in CT1 cultures, the 13C enrichments of alanine and citrate in the media increased, suggesting a sharp alteration of metabolic state. These findings demonstrate that metabolic flux can be comprehensively analysed for single bovine blastocysts and CT1 cell metabolism models that of the blastocyst. This project was supported by Agriculture and Food Research Initiative Competitive Grant no. 2015-67015-23237 from the USDA National Institute of Food and Agriculture.


2019 ◽  
Vol 20 (4) ◽  
pp. 252-259
Author(s):  
Zhitao Mao ◽  
Hongwu Ma

Background:Constraint-based metabolic network models have been widely used in phenotypic prediction and metabolic engineering design. In recent years, researchers have attempted to improve prediction accuracy by integrating regulatory information and multiple types of “omics” data into this constraint-based model. The transcriptome is the most commonly used data type in integration, and a large number of FBA (flux balance analysis)-based integrated algorithms have been developed.Methods and Results:We mapped the Kcat values to the tree structure of GO terms and found that the Kcat values under the same GO term have a higher similarity. Based on this observation, we developed a new method, called iMTBGO, to predict metabolic flux distributions by constraining reaction boundaries based on gene expression ratios normalized by marker genes under the same GO term. We applied this method to previously published data and compared the prediction results with other metabolic flux analysis methods which also utilize gene expression data. The prediction errors of iMTBGO for both growth rates and fluxes in the central metabolic pathways were smaller than those of earlier published methods.Conclusion:Considering the fact that reaction rates are not only determined by genes/expression levels, but also by the specific activities of enzymes, the iMTBGO method allows us to make more precise predictions of metabolic fluxes by using expression values normalized based on GO.


2014 ◽  
Author(s):  
Chao Shi ◽  
Jian Yin ◽  
Zhe Liu ◽  
Jian-Xin Wu ◽  
Qi Zhao ◽  
...  

The phytohormone salicylic acid (SA) affects plant development and defense responses. Recent studies revealed that SA is also involved in the regulation of sphingolipid metabolism, but the details of this regulation remain to be explored. Here, we use in silico Flux Balance Analysis (FBA) with published microarray data to construct a whole-cell simulation model, including 23 pathways, 259 reactions and 172 metabolites, to predict the alterations in flux of major sphingolipid species after treatment with exogenous SA. This model predicts significant changes in fluxes of certain sphingolipid species after SA treatment, changes that likely trigger downstream physiological and phenotypic effects. To validate the simulation, we used isotopic non-stationary metabolic flux analysis to measure sphingolipid contents and turnover rate in Arabidopsis thaliana seedlings treated with SA or the SA analog benzothiadiazole (BTH). The results show that both SA and BTH affect sphingolipid metabolism by not only concentration of certain species, but also the optimal flux distribution and turnover rate of sphingolipid contents. Our strategy allows us to formally estimate sphingolipid fluxes on a short time scale and gives us a systemic view of the effect of SA on sphingolipid homeostasis.


2013 ◽  
Vol 79 (9) ◽  
pp. 2922-2931 ◽  
Author(s):  
Jing Han ◽  
Jing Hou ◽  
Fan Zhang ◽  
Guomin Ai ◽  
Ming Li ◽  
...  

ABSTRACTHaloferax mediterraneiis able to accumulate the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with more than 10 mol% 3-hydroxyvalerate (3HV) from unrelated carbon sources. However, the pathways that produce propionyl coenzyme A (propionyl-CoA), an important precursor of 3HV monomer, have not yet been determined. Bioinformatic analysis ofH. mediterraneigenome indicated that this strain uses multiple pathways for propionyl-CoA biosynthesis, including the citramalate/2-oxobutyrate pathway, the aspartate/2-oxobutyrate pathway, the methylmalonyl-CoA pathway, and a novel 3-hydroxypropionate pathway. Cofeeding of pathway intermediates and inactivating pathway-specific genes supported that these four pathways were indeed involved in the biosynthesis of 3HV monomer. The novel 3-hydroxypropionate pathway that couples CO2assimilation with PHBV biosynthesis was further confirmed by analysis of13C positional enrichment in 3HV. Notably,13C metabolic flux analysis showed that the citramalate/2-oxobutyrate pathway (53.0% flux) and the 3-hydroxypropionate pathway (30.6% flux) were the two main generators of propionyl-CoA from glucose. In addition, genetic perturbation on the transcriptome of the ΔphaECmutant (deficient in PHBV accumulation) revealed that a considerable number of genes in the four propionyl-CoA synthetic pathways were significantly downregulated. We determined for the first time four propionyl-CoA-supplying pathways for PHBV production in haloarchaea, particularly including a new 3-hydroxypropionate pathway. These results would provide novel strategies for the production of PHBV with controllable 3HV molar fraction.


2005 ◽  
Vol 71 (12) ◽  
pp. 8587-8596 ◽  
Author(s):  
Judith Becker ◽  
Corinna Klopprogge ◽  
Oskar Zelder ◽  
Elmar Heinzle ◽  
Christoph Wittmann

ABSTRACT The overexpression of fructose 1,6-bisphosphatase (FBPase) in Corynebacterium glutamicum leads to significant improvement of lysine production on different sugars. Amplified expression of FBPase via the promoter of the gene encoding elongation factor TU (EFTU) increased the lysine yield in the feedback-deregulated lysine-producing strain C. glutamicum lysCfbr by 40% on glucose and 30% on fructose or sucrose. Additionally formation of the by-products glycerol and dihydroxyacetone was significantly reduced in the PEFTUfbp mutant. As revealed by 13C metabolic flux analysis on glucose the overexpression of FBPase causes a redirection of carbon flux from glycolysis toward the pentose phosphate pathway (PPP) and thus leads to increased NADPH supply. Normalized to an uptake flux of glucose of 100%, the relative flux into the PPP was 56% for C. glutamicum lysCfbr PEFTUfbp and 46% for C. glutamicum lysCfb r . The flux for NADPH supply was 180% in the PEFTUfbp strain and only 146% in the parent strain. Amplification of FBPase increases the production of lysine via an increased supply of NADPH. Comparative studies with another mutant containing the sod promoter upstream of the fbp gene indicate that the expression level of FBPase relates to the extent of the metabolic effects. The overexpression of FBPase seems useful for starch- and molasses-based industrial lysine production with C. glutamicum. The redirection of flux toward the PPP should also be interesting for the production of other NADPH-demanding compounds as well as for products directly stemming from the PPP.


Sign in / Sign up

Export Citation Format

Share Document