scholarly journals Illuminating Anaerobic Microbial Community and Cooccurrence Patterns across a Quality Gradient in Chinese Liquor Fermentation Pit Muds

2016 ◽  
Vol 82 (8) ◽  
pp. 2506-2515 ◽  
Author(s):  
Xiaolong Hu ◽  
Hai Du ◽  
Cong Ren ◽  
Yan Xu

ABSTRACTFermentation pit mud, an important reservoir of diverse anaerobic microorganisms, is essential for Chinese strong-aroma liquor production. Pit mud quality, according to its sensory characteristics, can be divided into three grades: degraded, normal, and high quality. However, the relationship between pit mud microbial community and pit mud quality is poorly understood, as are microbial associations within the pit mud ecosystem. Here, microbial communities at these grades were compared using Illumina MiSeq sequencing of the variable region V4 of the 16S rRNA gene. Our results revealed that the pit mud microbial community was correlated with its quality and environmental factors. Species richness, biodiversity, and relative and/or absolute abundances ofClostridia,Clostridium kluyveri,Bacteroidia, andMethanobacteriasignificantly increased, with corresponding increases in levels of pH, NH4+, and available phosphorus, from degraded to high-quality pit muds, while levels ofLactobacillus, dissolved organic carbon, and lactate significantly decreased, with normal samples in between. Furthermore, 271 pairs of significant and robust correlations (cooccurrence and negative) were identified from 76 genera using network analysis. Thirteen hubs of cooccurrence patterns, mainly under theClostridia,Bacteroidia,Methanobacteria, andMethanomicrobia, may play important roles in pit mud ecosystem stability, which may be destroyed with rapidly increased levels of lactic acid bacteria (Lactobacillus,Pediococcus, andStreptococcus). This study may help clarify the relationships among microbial community, environmental conditions, and pit mud quality, allow the improvement of pit mud quality by using bioaugmentation and controlling environmental factors, and shed more light on the ecological rules guiding community assembly in pit mud.

2013 ◽  
Vol 80 (2) ◽  
pp. 757-765 ◽  
Author(s):  
Amber M. Koskey ◽  
Jenny C. Fisher ◽  
Mary F. Traudt ◽  
Ryan J. Newton ◽  
Sandra L. McLellan

ABSTRACTGulls are prevalent in beach environments and can be a major source of fecal contamination. Gulls have been shown to harbor a high abundance of fecal indicator bacteria (FIB), such asEscherichia coliand enterococci, which can be readily detected as part of routine beach monitoring. Despite the ubiquitous presence of gull fecal material in beach environments, the associated microbial community is relatively poorly characterized. We generated comprehensive microbial community profiles of gull fecal samples using Roche 454 and Illumina MiSeq platforms to investigate the composition and variability of the gull fecal microbial community and to measure the proportion of FIB.EnterococcaceaeandEnterobacteriaceaewere the two most abundant families in our gull samples. Sequence comparisons between short-read data and nearly full-length 16S rRNA gene clones generated from the same samples revealedCatellicoccus marimammaliumas the most numerous taxon among all samples. The identification of bacteria from gull fecal pellets cultured on membrane-Enterococcusindoxyl-β-d-glucoside (mEI) plates showed that the dominant sequences recovered in our sequence libraries did not represent organisms culturable on mEI. Based on 16S rRNA gene sequencing of gull fecal isolates cultured on mEI plates, 98.8% were identified asEnterococcusspp., 1.2% were identified asStreptococcusspp., and none were identified asC. marimammalium. Illumina deep sequencing indicated that gull fecal samples harbor significantly higher proportions ofC. marimammalium16S rRNA gene sequences (>50-fold) relative to typical mEI culturableEnterococcusspp.C. marimammaliumtherefore can be confidently utilized as a genetic marker to identify gull fecal pollution in the beach environment.


2021 ◽  
Author(s):  
Xiaolong Hu ◽  
Dahong Feng ◽  
Miao Yu ◽  
Sifan Wang ◽  
Yong Zhang ◽  
...  

Abstract Background Chinese strong-flavor baijiu (CSFB) accounts for more than 70% of all Chinese liquor markets. Diverse microbes in pit mud found in the fermentation pit play a key role in CSFB production. However, the effect of spatial location on the diversity and structure of the microbial community in pit mud is still poorly understood Results Prokaryotic microbes in different pit mud(4- and 40-year)were analyzed by using Illumina MiSeq sequencing of 16S rRNA gene. The samples were collected from pit mud that was 4 and 40 years old in the top, middle, and under parts of the cellar walls and at the bottom of them. The results showed there was no significant difference (p>0.05) in the physicochemical factors, the Observed OTU, and α-diversity between the pit mud of two different ages. The index of the 4-year-old pit mud was lower (except for total acid, which was higher than) than that of the 40-year-old pit mud. The pH, total acid, Observed OTU, Chao 1, ACE in the 4-year-old pit mud (in the top and middle part of the cellar wall) and the 40-year-old pit mud(in the top part of the cellar wall) had significant (p<0.05) difference. At the phylum level, Firmicutes (56.70%) and Bacteroidetes (26.56%) accounted for more than 80% of the overall level. For the 4-year-old pit mud sample, the dominant genuses at each location were Proteiniphilum, Lactobacillus, and Caproiciproducens, while for the 40-year-old pit mud, there were 10 common genuses accounted for more than 50% of the dominant genuses in different pit mud belong to Clostridia. The RDA analysis results showed that 85.71% of the dominant bacteria positively correlated with pH, and especially the most correlated with the total acid and available phosphorus, so its content was significantly related to the dominant bacteria (p<0.01). Therefore, it inferred that the total acid and available phosphorus were the main physicochemical factors that affected the spatial distribution of prokaryotic microbial communities in the pit mud of cellars from the liquor distillery. Conclusions Comparing the young pit mud and the old pit mud, the structure and physicochemical factors of the prokaryotic microbial community in pit mud from Henan liquor-making company changed, and the changes occurred in the spatial location of different pits. Clostridia, which accounted for more than 50% of all types of pit mud, were responsible for the effect of total acid and available phosphorus on the microbial community. Based on the above, it provides a theoretical basis for Henan liquor-making companies in maintaining pit mud. Keywords: fermentation pit mud; spatial heterogeneity; microbial community; physicochemical factors; Chinese strong-flavor Baijiu.


2013 ◽  
Vol 80 (1) ◽  
pp. 177-183 ◽  
Author(s):  
Lavane Kim ◽  
Eulyn Pagaling ◽  
Yi Y. Zuo ◽  
Tao Yan

ABSTRACTThe impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected,BurkholderialesandRhodocyclalesof theBetaproteobacteriaclass were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes.


Author(s):  
Zhixian Wei ◽  
Shichun Ma ◽  
Rui Chen ◽  
Weidong Wu ◽  
Hui Fan ◽  
...  

A novel mesophilic, aerotolerant anaerobic bacterium, designated JN-18T, was isolated from the pit mud of a strong aromatic Chinese liquor. According to a 16S rRNA gene sequence analysis, it had the highest sequence similarity to Aminipila butyrica DSM 103574T (95.69%). The G+C content of its genomic DNA was 43.39 mol%. The cells were Gram-stain-negative, slightly curved rods with flagella. Optimum growth was observed at 37 °C, pH 6.5 and without extra addition of NaCl. Strain JN-18Tutilized amino acids (l-alanine, l-arginine, l-asparagine, l-lysine, l-methionine, l-serine and l-threonine), malate and pyruvate, and used l-arginine and l-lysine to produce acetate, butyrate, H2, and CO2. The major cellular fatty acids of strain JN-18T were C14:0, C16:0 DMA and C18:1 cis-9 DMA. The carbohydrate composition of the cell wall predominantly included galactose, glucose and rhamnose. Based on its phylogenetic, phenotypic, physiological and biochemical characteristics, strain JN-18T was classified as a representative of a novel species within the genus Aminipila , for which the name Aminipila luticellarii sp. nov. is proposed. The type strain is JN-18T (=CCAM 412T=JCM 39126T).


2016 ◽  
Vol 82 (12) ◽  
pp. 3572-3581 ◽  
Author(s):  
Kevin C. Lee ◽  
Matthew B. Stott ◽  
Peter F. Dunfield ◽  
Curtis Huttenhower ◽  
Ian R. McDonald ◽  
...  

ABSTRACTChthonomonas calidiroseaT49Tis a low-abundance, carbohydrate-scavenging, and thermophilic soil bacterium with a seemingly disorganized genome. We hypothesized that theC. calidiroseagenome would be highly responsive to local selection pressure, resulting in the divergence of its genomic content, genome organization, and carbohydrate utilization phenotype across environments. We tested this hypothesis by sequencing the genomes of fourC. calidiroseaisolates obtained from four separate geothermal fields in the Taupō Volcanic Zone, New Zealand. For each isolation site, we measured physicochemical attributes and defined the associated microbial community by 16S rRNA gene sequencing. Despite their ecological and geographical isolation, the genome sequences showed low divergence (maximum, 1.17%). Isolate-specific variations included single-nucleotide polymorphisms (SNPs), restriction-modification systems, and mobile elements but few major deletions and no major rearrangements. The 50-fold variation inC. calidirosearelative abundance among the four sites correlated with site environmental characteristics but not with differences in genomic content. Conversely, the carbohydrate utilization profiles of theC. calidiroseaisolates corresponded to the inferred isolate phylogenies, which only partially paralleled the geographical relationships among the sample sites. Genomic sequence conservation does not entirely parallel geographic distance, suggesting that stochastic dispersal and localized extinction, which allow for rapid population homogenization with little restriction by geographical barriers, are possible mechanisms ofC. calidiroseadistribution. This dispersal and extinction mechanism is likely not limited toC. calidiroseabut may shape the populations and genomes of many other low-abundance free-living taxa.IMPORTANCEThis study compares the genomic sequence variations and metabolisms of four strains ofChthonomonas calidirosea, a rare thermophilic bacterium from the phylumArmatimonadetes. It additionally compares the microbial communities and chemistry of each of the geographically distinct sites from which the fourC. calidiroseastrains were isolated.C. calidiroseawas previously reported to possess a highly disorganized genome, but it was unclear whether this reflected rapid evolution. Here, we show that each isolation site has a distinct chemistry and microbial community, but despite this, theC. calidiroseagenome is highly conserved across all isolation sites. Furthermore, genomic sequence differences only partially paralleled geographic distance, suggesting thatC. calidiroseagenotypes are not primarily determined by adaptive evolution. Instead, the presence ofC. calidiroseamay be driven by stochastic dispersal and localized extinction. This ecological mechanism may apply to many other low-abundance taxa.


2020 ◽  
Vol 66 (9) ◽  
pp. 495-504
Author(s):  
Yan Zheng ◽  
Xiaolong Hu ◽  
Zhongjun Jia ◽  
Paul L.E. Bodelier ◽  
Zhiying Guo ◽  
...  

It is widely believed that the quality and characteristics of Chinese strong-flavor liquor (CSFL) are closely related to the age of the pit mud; CSFL produced from older pit mud tastes better. This study aimed to investigate the alteration and interaction of prokaryotic communities across an age gradient in pit mud. Prokaryotic microbes in different-aged pit mud (1, 6, and 10 years old) were analyzed by Illumina MiSeq sequencing of the 16S rRNA gene. Analysis of the 16S rRNA gene indicated that the prokaryotic community was significantly altered with pit mud age. There was a significant increase in the genera Methanosarcina, Methanobacterium, and Aminobacterium with increased age of pit mud, while the genus Lactobacillus showed a significant decreasing trend. Network analysis demonstrated that both synergetic co-occurrence and niche competition were dominated by 68 prokaryotic genera. These genera formed 10 hubs of co-occurrence patterns, mainly under the phyla Firmicutes, Euryarchaeota, and Bacteroidetes, playing important roles on ecosystem stability of the pit mud. Environmental variables (pH, NH4+, available P, available K, and Ca2+) correlated significantly with prokaryotic community assembly. The interaction of prokaryotic communities in the pit mud ecosystem and the relationship among prokaryotic communities and environmental factors contribute to the higher quality of the pit mud in older fermentation pits.


mSystems ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Mao-Ke Liu ◽  
Yu-Ming Tang ◽  
Xiao-Jiao Guo ◽  
Ke Zhao ◽  
Petri Penttinen ◽  
...  

ABSTRACT The Chinese alcoholic beverage strong-flavor baijiu (SFB) gets its characteristic flavor during fermentation in cellars lined with pit mud. Microbes in the pit mud produce key precursors of flavor esters. The maturation time of natural pit mud of over 20 years has promoted attempts to produce artificial pit mud (APM) with a shorter maturation time. However, knowledge about the molecular basis of APM microbial dynamics and associated functional variation during SFB brewing is limited, and the role of this variability in high-quality SFB production remains poorly understood. We studied APM maturation in new cellars until the fourth brewing batch using 16S rRNA gene amplicon sequencing, quantitative PCR, metaproteomics, and metabolomics techniques. A total of 36 prokaryotic classes and 195 genera were detected. Bacilli and Clostridia dominated consistently, and the relative abundance of Bacilli decreased along with the APM maturation. Even though both amplicon sequencing and quantitative PCR showed increased abundance of Clostridia, the levels of most of the Clostridium proteins were similar in both the first- and fourth-batch APM samples. Six genera correlated with eight or more major flavor compounds in SFB samples. Functional prediction suggested that the prokaryotic communities in the fourth-batch APM samples were actively engaged in organic acid metabolism, and the detected higher concentrations of proteins and metabolites in the corresponding metabolic pathways supported the prediction. This multi-omics approach captured changes in the abundances of specific microbial species, proteins, and metabolites during APM maturation, which are of great significance for the optimization of APM culture technique. IMPORTANCE Strong-flavor baijiu (SFB) accounts for more than 70% of all Chinese liquor production. In the Chinese baijiu brewing industry, artificial pit mud (APM) has been widely used since the 1960s to construct fermentation cellars for production of high-quality SFB. To gain insights at the systems level into the mechanisms driving APM prokaryotic taxonomic and functional dynamics and into how this variation is connected with high-quality SFB production, we performed the first combined metagenomic, metaproteomic, and metabolomic analyses of this brewing microecosystem. Together, the multi-omics approach enabled us to develop a more complete picture of the changing metabolic processes occurring in APM microbial communities during high-quality SFB production, which will be helpful for further optimization of APM culture technique and improvement of SFB quality.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benedicte Ella Zranseu Aka ◽  
Theodore N’dede Djeni ◽  
Simon Laurent Tiemele Amoikon ◽  
Jan Kannengiesser ◽  
Naaila Ouazzani ◽  
...  

AbstractPalm Oil Mill Effluents (POME) are complex fermentative substrates which habour diverse native microbial contaminants. However, knowledge on the microbiota community shift caused by the anthropogenic effects of POME in the environment is up to date still to be extensively documented. In this study, the bacterial and archaeal communities of POME from two palm oil processing systems (artisanal and industrial) were investigated by Illumina MiSeq Platform. Despite the common characteristics of these wastewaters, we found that their microbial communities were significantly different with regard to their diversity and relative abundance of their different Amplicon Sequence Variants (ASV). Indeed, POME from industrial plants harboured as dominant phyla Firmicutes (46.24%), Bacteroidetes (34.19%), Proteobacteria (15.11%), with the particular presence of Spirochaetes, verrucomicrobia and Synergistetes, while those from artisanal production were colonized by Firmicutes (92.06%), Proteobacteria (4.21%) and Actinobacteria (2.09%). Furthermore, 43 AVSs of archaea were detected only in POME from industrial plants and assigned to Crenarchaeota, Diapherotrites, Euryarchaeota and Nanoarchaeaeota phyla, populated mainly by many methane-forming archaea. Definitively, the microbial community composition of POME from both type of processing was markedly different, showing that the history of these ecosystems and various processing conditions have a great impact on each microbial community structure and diversity. By improving knowledge about this microbiome, the results also provide insight into the potential microbial contaminants of soils and rivers receiving these wastewaters.


Author(s):  
Suqi Chen ◽  
Jun Huang ◽  
Hui Qin ◽  
Guiqiang He ◽  
Rong-qing Zhou ◽  
...  

Directional stress is an effective measure to evolve community structure and improve bioactivity of pit mud (PM). In this study, adding fortified Daqu in artificial PM (APM) was to disturb the microbial community and affect the metabolites furthermore. To evaluate the effect of fortified Daqu on culturing APM, microbial communities of APMs with/without adding fortified Daqu were investigated by fluorescence in situ hybridization and Illumina Miseq. These results indicated that microbes (Clostridium sp., Clostridium kluyveri, hydrogenotrophic methanogens, and acetotrophic methanogens) related to the production of key aroma compounds increased notably when fortified Daqu was added. Especially the hydrogenotrophic and acetotrophic methanogens increased by 5.19- and 4.63-fold after 30-days’ culture. Then metabolites (organic acids, volatile compounds) were also analyzed by HPLC and HS-SPME-GC-MS. Results showed that the content of butyric acid and hexanoic acid was significantly higher when adding fortified Daqu. What’s more, the proportion of esters and phenols were higher compared with the APM without adding fortified Daqu as well. The microbial compositions of APMs with/without adding fortified Daqu were observed in this study, which indicated the microbial community evolving in functional community in favor of liquor-brewing and suggested a novelty process was developed by disturbing the community diversity.


2013 ◽  
Vol 79 (12) ◽  
pp. 3601-3609 ◽  
Author(s):  
Henglin Cui ◽  
Kun Yang ◽  
Eulyn Pagaling ◽  
Tao Yan

ABSTRACTRecent studies have reported high levels of fecal indicator enterococci in marine beach sand. This study aimed to determine the spatial and temporal variation of enterococcal abundance and to evaluate its relationships with microbial community parameters in Hawaii beach sand and water. Sampling at 23 beaches on the Island of Oahu detected higher levels of enterococci in beach foreshore sand than in beach water on a mass unit basis. Subsequent 8-week consecutive samplings at two selected beaches (Waialae and Kualoa) consistently detected significantly higher levels of enterococci in backshore sand than in foreshore/nearshore sand and beach water. Comparison between the abundance of enterococci and the microbial communities showed that enterococci correlated significantly with totalVibrioin all beach zones but less significantly with total bacterial density andEscherichia coli. Samples from the different zones of Waialae beach were sequenced by 16S rRNA gene pyrosequencing to determine the microbial community structure and diversity. The backshore sand had a significantly more diverse community and contained different major bacterial populations than the other beach zones, which corresponded to the spatial distribution pattern of enterococcal abundance. Taken together, multiple lines of evidence support the possibility of enterococci as autochthonous members of the microbial community in Hawaii beach sand.


Sign in / Sign up

Export Citation Format

Share Document