scholarly journals Tolerance of Listeria monocytogenes to Quaternary Ammonium Sanitizers Is Mediated by a Novel Efflux Pump Encoded by emrE

2015 ◽  
Vol 82 (3) ◽  
pp. 939-953 ◽  
Author(s):  
Jovana Kovacevic ◽  
Jennifer Ziegler ◽  
Ewa Wałecka-Zacharska ◽  
Aleisha Reimer ◽  
David D. Kitts ◽  
...  

ABSTRACTA novel genomic island (LGI1) was discovered inListeria monocytogenesisolates responsible for the deadliest listeriosis outbreak in Canada, in 2008. To investigate the functional role of LGI1, the outbreak strain 08-5578 was exposed to food chain-relevant stresses, and the expression of 16 LGI1 genes was measured. LGI1 genes with putative efflux (L. monocytogenesemrE[emrELm]), regulatory (lmo1851), and adhesion (sel1) functions were deleted, and the mutants were exposed to acid (HCl), cold (4°C), salt (10 to 20% NaCl), and quaternary ammonium-based sanitizers (QACs). Deletion oflmo1851had no effect on theL. monocytogenesstress response, and deletion ofsel1did not influence Caco-2 and HeLa cell adherence/invasion, whereas deletion ofemrEresulted in increased susceptibility to QACs (P< 0.05) but had no effect on the MICs of gentamicin, chloramphenicol, ciprofloxacin, erythromycin, tetracycline, acriflavine, and triclosan. In the presence of the QAC benzalkonium chloride (BAC; 5 μg/ml), 14/16 LGI1 genes were induced, andlmo1861(putative repressor gene) was constitutively expressed at 4°C, 37°C, and 52°C and in the presence of UV exposure (0 to 30 min). Following 1 h of exposure to BAC (10 μg/ml), upregulation ofemrE(49.6-fold),lmo1851(2.3-fold),lmo1861(82.4-fold), andsigB(4.1-fold) occurred. Reserpine visibly suppressed the growth of the ΔemrELmstrain, indicating that QAC tolerance is due at least partially to efflux activity. These data suggest that a minimal function of LGI1 is to increase the tolerance ofL. monocytogenesto QACs viaemrELm. Since QACs are commonly used in the food industry, there is a concern thatL. monocytogenesstrains possessingemrEwill have an increased ability to survive this stress and thus to persist in food processing environments.

2013 ◽  
Vol 79 (19) ◽  
pp. 6067-6074 ◽  
Author(s):  
Vikrant Dutta ◽  
Driss Elhanafi ◽  
Sophia Kathariou

ABSTRACTAnalysis of a panel of 116Listeria monocytogenesstrains of diverse serotypes and sources (clinical, environment of food processing plants, and food) revealed that all but one of the 71 benzalkonium chloride-resistant (BCr) isolates harboredbcrABC, previously identified on a large plasmid (pLM80) of the 1998-1999 hot dog outbreak strain H7858. In contrast,bcrABCwas not detected among BC-susceptible (BCs) isolates. ThebcrABCsequences were highly conserved among strains of different serotypes, but variability was noted in sequences flankingbcrABC. The majority of the BCrisolates had either the pLM80-type of organization of thebcrABCregion or appeared to harborbcrABCon the chromosome, adjacent to novel sequences. Transcription ofbcrABCwas induced by BC (10 μg/ml) in strains of different serotypes and diversebcrABCregion organization. These findings reveal widespread dissemination ofbcrABCacross BCrL. monocytogenesstrains regardless of serotype and source, while also suggesting possible mechanisms ofbcrABCdissemination acrossL. monocytogenesgenomes.


2015 ◽  
Vol 59 (11) ◽  
pp. 6873-6881 ◽  
Author(s):  
Kathryn Winglee ◽  
Shichun Lun ◽  
Marco Pieroni ◽  
Alan Kozikowski ◽  
William Bishai

ABSTRACTDrug resistance is a major problem inMycobacterium tuberculosiscontrol, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity againstM. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independentM. tuberculosismutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations inRv2887were common to all three MP-III-71-resistant mutants, and we confirmed the role ofRv2887as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified inEscherichia colito negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation ofRv2887abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations ofRv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance ofM. tuberculosisRv2887mutants may involve efflux pump upregulation and also drug methylation.


2013 ◽  
Vol 79 (9) ◽  
pp. 2944-2951 ◽  
Author(s):  
Anne Holch ◽  
Kristen Webb ◽  
Oksana Lukjancenko ◽  
David Ussery ◽  
Benjamin M. Rosenthal ◽  
...  

ABSTRACTListeria monocytogenesis a food-borne human-pathogenic bacterium that can cause infections with a high mortality rate. It has a remarkable ability to persist in food processing facilities. Here we report the genome sequences for twoL. monocytogenesstrains (N53-1 and La111) that were isolated 6 years apart from two different Danish fish processers. Both strains are of serotype 1/2a and belong to a highly persistent DNA subtype (random amplified polymorphic DNA [RAPD] type 9). We demonstrate usingin silicoanalyses that both strains belong to the multilocus sequence typing (MLST) type ST121 that has been isolated as a persistent subtype in several European countries. The purpose of this study was to use genome analyses to identify genes or proteins that could contribute to persistence. In a genome comparison, the two persistent strains were extremely similar and collectively differed from the reference lineage II strain, EGD-e. Also, they differed markedly from a lineage I strain (F2365). On the proteome level, the two strains were almost identical, with a predicted protein homology of 99.94%, differing at only 2 proteins. No single-nucleotide polymorphism (SNP) differences were seen between the two strains; in contrast, N53-1 and La111 differed from the EGD-e reference strain by 3,942 and 3,471 SNPs, respectively. We included a persistentL. monocytogenesstrain from the United States (F6854) in our comparisons. Compared to nonpersistent strains, all three persistent strains were distinguished by two genome deletions: one, of 2,472 bp, typically contains the gene forinlF, and the other, of 3,017 bp, includes three genes potentially related to bacteriocin production and transport (lmo2774,lmo2775, and the 3′-terminal part oflmo2776). Further studies of highly persistent strains are required to determine if the absence of these genes promotes persistence. While the genome comparison did not point to a clear physiological explanation of the persistent phenotype, the remarkable similarity between the two strains indicates that subtypes with specific traits are selected for in the food processing environment and that particular genetic and physiological factors are responsible for the persistent phenotype.


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Raees A. Paul ◽  
Shivaprakash M. Rudramurthy ◽  
Manpreet Dhaliwal ◽  
Pankaj Singh ◽  
Anup K. Ghosh ◽  
...  

ABSTRACT The magnitude of azole resistance in Aspergillus flavus and its underlying mechanism is obscure. We evaluated the frequency of azole resistance in a collection of clinical (n = 121) and environmental isolates (n = 68) of A. flavus by the broth microdilution method. Six (5%) clinical isolates displayed voriconazole MIC greater than the epidemiological cutoff value. Two of these isolates with non-wild-type MIC were isolated from same patient and were genetically distinct, which was confirmed by amplified fragment length polymorphism analysis. Mutations associated with azole resistance were not present in the lanosterol 14-α demethylase coding genes (cyp51A, cyp51B, and cyp51C). Basal and voriconazole-induced expression of cyp51A homologs and various efflux pump genes was analyzed in three each of non-wild-type and wild-type isolates. All of the efflux pump genes screened showed low basal expression irrespective of the azole susceptibility of the isolate. However, the non-wild-type isolates demonstrated heterogeneous overexpression of many efflux pumps and the target enzyme coding genes in response to induction with voriconazole (1 μg/ml). The most distinctive observation was approximately 8- to 9-fold voriconazole-induced overexpression of an ortholog of the Candida albicans ATP binding cassette (ABC) multidrug efflux transporter, Cdr1, in two non-wild-type isolates compared to those in the reference strain A. flavus ATCC 204304 and other wild-type strains. Although the dominant marker of azole resistance in A. flavus is still elusive, the current study proposes the possible role of multidrug efflux pumps, especially that of Cdr1B overexpression, in contributing azole resistance in A. flavus.


2015 ◽  
Vol 59 (8) ◽  
pp. 4817-4825 ◽  
Author(s):  
Xinlong He ◽  
Feng Lu ◽  
Fenglai Yuan ◽  
Donglin Jiang ◽  
Peng Zhao ◽  
...  

ABSTRACTChronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency ofAcinetobacter baumanniiand the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolatedA. baumanniistrains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designatedA. baumanniiABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI,adeB,adeG,adeJ,carO, andompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation ofadeGcorrelated with biofilm induction. The consistent upregulation ofadeGandabaIwas detected in A-III-typeA. baumanniiin response to levofloxacin and meropenem (1/8 to 1/2× the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused byA. baumannii. This study provides useful information for the development of antibiofilm strategies.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Yumeng Zhang ◽  
Jia Zhang ◽  
Peng Cui ◽  
Ying Zhang ◽  
Wenhong Zhang

ABSTRACT Pyrazinamide (PZA) is a critical drug used for the treatment of tuberculosis (TB). PZA is a prodrug that requires conversion to the active component pyrazinoic acid (POA) by pyrazinamidase (PZase) encoded by the pncA gene. Although resistance to PZA is mostly caused by pncA mutations and less commonly by rpsA, panD, and clpC1 mutations, clinical strains without these mutations are known to exist. While efflux of POA was demonstrated in Mycobacterium tuberculosis previously, the efflux proteins involved have not been identified. Here we performed POA binding studies with an M. tuberculosis proteome microarray and identified four efflux proteins (Rv0191, Rv3756c, Rv3008, and Rv1667c) that bind POA. Overexpression of the four efflux pump genes in M. tuberculosis caused low-level resistance to PZA and POA but not to other drugs. Furthermore, addition of efflux pump inhibitors such as reserpine, piperine, and verapamil caused increased susceptibility to PZA in M. tuberculosis strains overexpressing the efflux proteins Rv0191, Rv3756c, Rv3008, and Rv1667c. Our studies indicate that these four efflux proteins may be responsible for PZA/POA efflux and cause PZA resistance in M. tuberculosis. Future studies are needed to assess their roles in PZA resistance in clinical strains.


2017 ◽  
Vol 86 (3) ◽  
Author(s):  
Anna Sintsova ◽  
Sara Smith ◽  
Sargurunathan Subashchandrabose ◽  
Harry L. Mobley

ABSTRACTUrinary tract infection (UTI) is the second most common infection in humans, making it a global health priority. Nearly half of all women will experience a symptomatic UTI, with uropathogenicEscherichia coli(UPEC) being the major causative agent of the infection. Although there has been extensive research on UPEC virulence determinants, the importance of host-specific metabolism remains understudied. We report here that UPEC upregulates the expression of ethanolamine utilization genes during uncomplicated UTIs in humans. We further show that UPEC ethanolamine metabolism is required for effective bladder colonization in the mouse model of ascending UTI and is dispensable for bladder colonization in an immunocompromised mouse model of UTI. We demonstrate that although ethanolamine metabolism mutants do not show increased susceptibility to antimicrobial responses of neutrophils, this metabolic pathway is important for surviving the innate immune system during UTI. This study reveals a novel aspect of UPEC metabolism in the host and provides evidence for an underappreciated link between bacterial metabolism and the host immune response.


2013 ◽  
Vol 13 (4) ◽  
pp. 438-451 ◽  
Author(s):  
Srisuda Pannanusorn ◽  
Bernardo Ramírez-Zavala ◽  
Heinrich Lünsdorf ◽  
Birgitta Agerberth ◽  
Joachim Morschhäuser ◽  
...  

ABSTRACT In Candida parapsilosis , biofilm formation is considered to be a major virulence factor. Previously, we determined the ability of 33 clinical isolates causing bloodstream infection to form biofilms and identified three distinct groups of biofilm-forming strains (negative, low, and high). Here, we establish two different biofilm structures among strains forming large amounts of biofilm in which strains with complex spider-like structures formed robust biofilms on different surface materials with increased resistance to fluconazole. Surprisingly, the transcription factor Bcr1, required for biofilm formation in Candida albicans and C. parapsilosis , has an essential role only in strains with low capacity for biofilm formation. Although BCR1 leads to the formation of more and longer pseudohyphae, it was not required for initial adhesion and formation of mature biofilms in strains with a high level of biofilm formation. Furthermore, an additional phenotype affected by BCR1 was the switch in colony morphology from rough to crepe, but only in strains forming high levels of biofilm. All bcr1 Δ/Δ mutants showed increased proteolytic activity and increased susceptibility to the antimicrobial peptides protamine and RP-1 compared to corresponding wild-type and complemented strains. Taken together, our results demonstrate that biofilm formation in clinical isolates of C. parapsilosis is both dependent and independent of BCR1 , but even in strains which showed a BCR1 -independent biofilm phenotype, BCR1 has alternative physiological functions.


2020 ◽  
Vol 69 (8) ◽  
pp. 1743-1764
Author(s):  
Mridul Maheshwari ◽  
Arbind Samal ◽  
Vaibhav Bhamoriya

PurposeThe purpose of this study is to explore the role of employee relations and human resource management (HRM) practices on firms' commitment to sustainability in the context of micro, small and medium enterprises (MSME) in India. This paper proposes a theoretical framework, namely “awareness, action, comprehensiveness, and excellence (AACE),” to present the solutions and practices as adopted by MSME firms in meeting their sustainability objectives alongside pluralistic constraints related to human resource, capital and legitimacy risk.Design/methodology/approachThe paper employs a cross-case methodology to investigate five food processing MSME firms to understand and delineate the role of employee relations and HRM practices in driving their commitment to sustainability.FindingsThe paper discusses the status of employee relations and HRM practices as practiced by MSME firms, specifically designed to meet their agenda to strengthen their commitment to sustainability. The study proposes a framework constituting four levels, namely “awareness, action, comprehensiveness, and excellence (AACE),” that reflects HRM practices as adopted by MSME firms to develop their commitment to sustainability.Social implicationsMSMEs and food processing industries are critical to the growth of Indian economy and likewise for other emerging and developing economies. They are especially critical for their contribution to overall employment and sustainability comprising the second, third and fourth supplier links in supply chains. They have a major impact on sustainability outcomes and the life quality of employees. This paper makes a contribution in this direction.Originality/valueThe study fulfills the need to explore the role of employee relations and HRM practices to develop “commitment to sustainability” in the context of food processing MSME firms in an emerging economy of India. This paper adds an understanding of people management practices and sustainability in small firms (MSMEs), adding to the existing literature on the domain, which is mostly skewed toward large firms.


2011 ◽  
Vol 79 (9) ◽  
pp. 3596-3606 ◽  
Author(s):  
Chris S. Rae ◽  
Aimee Geissler ◽  
Paul C. Adamson ◽  
Daniel A. Portnoy

ABSTRACTListeria monocytogenesis a Gram-positive intracellular pathogen that is naturally resistant to lysozyme. Recently, it was shown that peptidoglycan modification by N-deacetylation or O-acetylation confers resistance to lysozyme in various Gram-positive bacteria, includingL. monocytogenes.L. monocytogenespeptidoglycan is deacetylated by the action ofN-acetylglucosamine deacetylase (Pgd) and acetylated byO-acetylmuramic acid transferase (Oat). We characterized Pgd−, Oat−, and double mutants to determine the specific role ofL. monocytogenespeptidoglycan acetylation in conferring lysozyme sensitivity during infection of macrophages and mice. Pgd−and Pgd−Oat−double mutants were attenuated approximately 2 and 3.5 logs, respectively,in vivo. In bone-marrow derived macrophages, the mutants demonstrated intracellular growth defects and increased induction of cytokine transcriptional responses that emanated from a phagosome and the cytosol. Lysozyme-sensitive mutants underwent bacteriolysis in the macrophage cytosol, resulting in AIM2-dependent pyroptosis. Each of thein vitrophenotypes was rescued upon infection of LysM−macrophages. The addition of extracellular lysozyme to LysM−macrophages restored cytokine induction, host cell death, andL. monocytogenesgrowth inhibition. This surprising observation suggests that extracellular lysozyme can access the macrophage cytosol and act on intracellular lysozyme-sensitive bacteria.


Sign in / Sign up

Export Citation Format

Share Document