scholarly journals Iron-Binding Compounds fromAgrobacterium spp.: Biological Control StrainAgrobacterium rhizogenes K84 Produces a Hydroxamate Siderophore

2001 ◽  
Vol 67 (2) ◽  
pp. 654-664 ◽  
Author(s):  
Ramón Penyalver ◽  
Philippe Oger ◽  
Marı́a M. López ◽  
Stephen K. Farrand

ABSTRACT Iron-binding compounds were produced in various amounts in response to iron starvation by a collection of Agrobacterium strains belonging to the species A. tumefaciens, A. rhizogenes, andA. vitis. The crown gall biocontrol agent A. rhizogenes strain K84 produced a hydroxamate iron chelator in large amounts. Production of this compound, and also of a previously described antibiotic-like substance called ALS84, occurred only in cultures of strain K84 grown in iron-deficient medium. Similarly, sensitivity to ALS84 was expressed only when susceptible cells were tested in low-iron media. Five independent Tn5-induced mutants of strain K84 affected in the production of the hydroxamate iron chelator showed a similar reduction in the production of ALS84. One of these mutants, M8-10, was completely deficient in the production of both agents and grew poorly compared to the wild type under iron-limiting conditions. Thus, the hydroxamate compound has siderophore activity. A 9.1-kb fragment of chromosomal DNA containing the Tn5 insertion from this mutant was cloned and marker exchanged into wild-type strain K84. The homogenote lost the ability to produce the hydroxamate siderophore and also ALS84. A cosmid clone was isolated from a genomic library of strain K84 that restored to strain M8-10 the ability to produce of the siderophore and ALS84, as well as growth in iron-deficient medium. This cosmid clone contained the region in which Tn5 was located in the mutant. Sequence analysis showed that the Tn5 insert in this mutant was located in an open reading frame coding for a protein that has similarity to those of the gramicidin S synthetase repeat superfamily. Some such proteins are required for synthesis of hydroxamate siderophores by other bacteria. Southern analysis revealed that the biosynthetic gene from strain K84 is present only in isolates of A. rhizogenes that produce hydroxamate-type compounds under low-iron conditions. Based on physiological and genetic analyses showing a correlation between production of a hydroxamate siderophore and ALS84 by strain K84, we conclude that the two activities share a biosynthetic route and may be the same compound.

2000 ◽  
Vol 44 (7) ◽  
pp. 1825-1831 ◽  
Author(s):  
Peter S. Margolis ◽  
Corinne J. Hackbarth ◽  
Dennis C. Young ◽  
Wen Wang ◽  
Dawn Chen ◽  
...  

ABSTRACT Peptide deformylase, a bacterial enzyme, represents a novel target for antibiotic discovery. Two deformylase homologs, defA and defB, were identified inStaphylococcus aureus. The defA homolog, located upstream of the transformylase gene, was identified by genomic analysis and was cloned from chromosomal DNA by PCR. A distinct homolog, defB, was cloned from an S. aureus genomic library by complementation of the arabinose-dependent phenotype of a P BAD -def Escherichia coli strain grown under arabinose-limiting conditions. Overexpression in E. coli of defB, but not defA, correlated to increased deformylase activity and decreased susceptibility to actinonin, a deformylase-specific inhibitor. ThedefB gene could not be disrupted in wild-type S. aureus, suggesting that this gene, which encodes a functional deformylase, is essential. In contrast, thedefA gene could be inactivated; the function of this gene is unknown. Actinonin-resistant mutants grew slowly in vitro and did not show cross-resistance to other classes of antibiotics. When compared to the parent, an actinonin-resistant strain produced an attenuated infection in a murine abscess model, indicating that this strain also has a growth disadvantage in vivo. Sequence analysis of the actinonin-resistant mutants revealed that each harbors a loss-of-function mutation in the fmt gene. Susceptibility to actinonin was restored when the wild-type fmt gene was introduced into these mutant strains. An S. aureusΔfmt strain was also resistant to actinonin, suggesting that a functional deformylase activity is not required in a strain that lacks formyltransferase activity. Accordingly, thedefB gene could be disrupted in an fmt mutant.


2002 ◽  
Vol 70 (8) ◽  
pp. 4389-4398 ◽  
Author(s):  
Jeremy S. Brown ◽  
Sarah M. Gilliland ◽  
Javier Ruiz-Albert ◽  
David W. Holden

ABSTRACT Bacteria frequently have multiple mechanisms for acquiring iron, an essential micronutrient, from the environment. We have identified a four-gene Streptococcus pneumoniae operon, named pit, encoding proteins with similarity to components of a putative Brachyspira hyodysenteriae iron uptake ABC transporter, Bit. An S. pneumoniae strain containing a defined mutation in pit has impaired growth in medium containing the iron chelator ethylenediamine di-o-hydroxyphenylacetic acid, reduced sensitivity to the iron-dependent antibiotic streptonigrin, and impaired virulence in a mouse model of S. pneumoniae systemic infection. Furthermore, addition of a mutation in pit to a strain containing mutations in the two previously described S. pneumoniae iron uptake ABC transporters, piu and pia, resulted in a strain with impaired growth in two types of iron-deficient medium, a high degree of resistance to streptonigrin, and a reduced rate of iron uptake. Comparison of the susceptibilities to streptonigrin of the individual pit, piu, and pia mutant strains and comparison of the growth in iron-deficient medium and virulence of single and double mutant strains suggest that pia is the dominant iron transporter during in vitro and in vivo growth.


2003 ◽  
Vol 185 (11) ◽  
pp. 3361-3372 ◽  
Author(s):  
Meenal Deshmukh ◽  
Serdar Turkarslan ◽  
Donniel Astor ◽  
Maria Valkova-Valchanova ◽  
Fevzi Daldal

ABSTRACT The cytoplasmic membrane protein CcdA and its homologues in other species, such as DsbD of Escherichia coli, are thought to supply the reducing equivalents required for the biogenesis of c-type cytochromes that occurs in the periplasm of gram-negative bacteria. CcdA-null mutants of the facultative phototroph Rhodobacter capsulatus are unable to grow under photosynthetic conditions (Ps−) and do not produce any active cytochrome c oxidase (Nadi−) due to a pleiotropic cytochrome c deficiency. However, under photosynthetic or respiratory growth conditions, these mutants revert frequently to yield Ps+ Nadi+ colonies that produce c-type cytochromes despite the absence of CcdA. Complementation of a CcdA-null mutant for the Ps+ growth phenotype was attempted by using a genomic library constructed with chromosomal DNA from a revertant. No complementation was observed, but plasmids that rescued a CcdA-null mutant for photosynthetic growth by homologous recombination were recovered. Analysis of one such plasmid revealed that the rescue ability was mediated by open reading frame 3149, encoding the dithiol:disulfide oxidoreductase DsbA. DNA sequence data revealed that the dsbA allele on the rescuing plasmid contained a frameshift mutation expected to produce a truncated, nonfunctional DsbA. Indeed, a dsbA ccdA double mutant was shown to be Ps+ Nadi+, establishing that in R. capsulatus the inactivation of dsbA suppresses the c-type cytochrome deficiency due to the absence of ccdA. Next, the ability of the wild-type dsbA allele to suppress the Ps+ growth phenotype of the dsbA ccdA double mutant was exploited to isolate dsbA-independent ccdA revertants. Sequence analysis revealed that these revertants carried mutations in dsbB and that their Ps+ phenotypes could be suppressed by the wild-type allele of dsbB. As with dsbA, a dsbB ccdA double mutant was also Ps+ Nadi+ and produced c-type cytochromes. Therefore, the absence of either DsbA or DsbB restores c-type cytochrome biogenesis in the absence of CcdA. Finally, it was also found that the DsbA-null and DsbB-null single mutants of R. capsulatus are Ps+ and produce c-type cytochromes, unlike their E. coli counterparts, but are impaired for growth under respiratory conditions. This finding demonstrates that in R. capsulatus the dithiol:disulfide oxidoreductases DsbA and DsbB are not essential for cytochrome c biogenesis even though they are important for respiration under certain conditions.


2010 ◽  
Vol 39 (10) ◽  
pp. 1446-1451 ◽  
Author(s):  
Hye-Jin Cho ◽  
Hyun-Sun Lee ◽  
Eun-Young Jung ◽  
So-Yeon Park ◽  
Woo-Taek Lim ◽  
...  

Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1105-1117 ◽  
Author(s):  
W John Haynes ◽  
Kit-Yin Ling ◽  
Robin R Preston ◽  
Yoshiro Saimi ◽  
Ching Kung

Abstract Pawn mutants of Paramecium tetraurelia lack a depolarization-activated Ca2+ current and do not swim backward. Using the method of microinjection and sorting a genomic library, we have cloned a DNA fragment that complements pawn-B (pwB/pwB). The minimal complementing fragment is a 798-bp open reading frame (ORF) that restores the Ca2+ current and the backward swimming when expressed. This ORF contains a 29-bp intron and is transcribed and translated. The translated product has two putative transmembrane domains but no clear matches in current databases. Mutations in the available pwB alleles were found within this ORF. The d4-95 and d4-96 alleles are single base substitutions, while d4-662 (previously pawn-D) harbors a 44-bp insertion that matches an internal eliminated sequence (IES) found in the wild-type germline DNA except for a single C-to-T transition. Northern hybridizations and RT-PCR indicate that d4-662 transcripts are rapidly degraded or not produced. A second 155-bp IES in the wild-type germline ORF excises at two alternative sites spanning three asparagine codons. The pwB ORF appears to be separated from a 5′ neighboring ORF by only 36 bp. The close proximity of the two ORFs and the location of the pwB protein as indicated by GFP-fusion constructs are discussed.


1992 ◽  
Vol 12 (8) ◽  
pp. 3609-3613
Author(s):  
L Jiang ◽  
A Connor ◽  
M J Shulman

Homologous recombination between transferred and chromosomal DNA can be used for mapping mutations by marker rescue, i.e., by identifying which segment of wild-type DNA can recombine with the mutant chromosomal gene and restore normal function. In order to define how much the fragments should overlap each other for reliable mapping, we have measured how the frequency of marker rescue is affected by the position of the chromosomal mutation relative to the ends of the transferred DNA fragments. For this purpose, we used several DNA fragments to effect marker rescue in two mutant hybridomas which bear mutations 673 bp apart in the exons encoding the second and third constant region domains of the immunoglobulin mu heavy chain. The frequency of marker rescue decreased greatly when the mutation was located near one of the ends of the fragments, the results indicating that fragments should be designed to overlap by at least several hundred base pairs. Possible explanations for this "end effect" are considered.


2005 ◽  
Vol 49 (4) ◽  
pp. 1495-1501 ◽  
Author(s):  
Ayush Kumar ◽  
Elizabeth A. Worobec

ABSTRACT Serratia marcescens is an important nosocomial agent known for causing various infections in immunocompromised individuals. Resistance of this organism to a broad spectrum of antibiotics makes the treatment of infections very difficult. This study was undertaken to identify multidrug resistance efflux pumps in S. marcescens. Three mutant strains of S. marcescens were isolated in vitro by the serial passaging of a wild-type strain in culture medium supplemented with ciprofloxacin, norfloxacin, or ofloxacin. Fluoroquinolone accumulation assays were performed to detect the presence of a proton gradient-dependent efflux mechanism. Two of the mutant strains were found to be effluxing norfloxacin, ciprofloxacin, and ofloxacin, while the third was found to efflux only ofloxacin. A genomic library of S. marcescens wild-type strain UOC-67 was constructed and screened for RND pump-encoding genes by using DNA probes for two putative RND pump-encoding genes. Two different loci were identified: sdeAB, encoding an MFP and an RND pump, and sdeCDE, encoding an MFP and two different RND pumps. Northern blot analysis revealed overexpression of sdeB in two mutant strains effluxing fluoroquinolones. Analysis of the sdeAB and sdeCDE loci in Escherichia coli strain AG102MB, deficient in the RND pump (AcrB), revealed that gene products of sdeAB are responsible for the efflux of a diverse range of substrates that includes ciprofloxacin, norfloxacin, ofloxacin, chloramphenicol, sodium dodecyl sulfate, ethidium bromide, and n-hexane, while those of sdeCDE did not result in any change in susceptibilities to any of these agents.


1998 ◽  
Vol 66 (9) ◽  
pp. 4123-4129 ◽  
Author(s):  
Philip J. Hill ◽  
Alan Cockayne ◽  
Patrick Landers ◽  
Julie A. Morrissey ◽  
Catriona M. Sims ◽  
...  

ABSTRACT In Staphylococcus epidermidis and Staphylococcus aureus, a number of cell wall- and cytoplasmic membrane-associated lipoproteins are induced in response to iron starvation. To gain insights into the molecular basis of iron-dependent gene regulation in the staphylococci, we sequenced the DNA upstream of the 3-kb S. epidermidis sitABC operon, which Northern blot analysis indicates is transcriptionally regulated by the growth medium iron content. We identified two DNA sequences which are homologous to elements of the Corynebacterium diphtheriae DtxR regulon, which controls, in response to iron stress, for example, production of diphtheria toxin, siderophore, and a heme oxygenase. Upstream of thesitABC operon and divergently transcribed lies a 645-bp open reading frame (ORF), which codes for a polypeptide of approximately 25 kDa with homology to the DtxR family of metal-dependent repressor proteins. This ORF has been designated SirR (staphylococcal iron regulator repressor). Within thesitABC promoter/operator region, we also located a region of dyad symmetry overlapping the transcriptional start ofsitABC which shows high homology to the DtxR operator consensus sequence, suggesting that this region, termed the Sir box, is the SirR-binding site. The SirR protein was overexpressed, purified, and used in DNA mobility shift assays; SirR retarded the migration of a synthetic oligonucleotide based on the Sir box in a metal (Fe2+ or Mn2+)-dependent manner, providing confirmatory evidence that this motif is the SirR-binding site. Furthermore, Southern blot analysis of staphylococcal chromosomal DNA with the synthetic Sir box as a probe confirmed that there are at least five Sir boxes in the S. epidermidis genome and at least three in the genome of S. aureus, suggesting that SirR controls the expression of multiple target genes. Using a monospecific polyclonal antibody raised against SirR to probe Western blots of whole-cell lysates of S. aureus, S. carnosus,S. epidermidis, S. hominis, S. cohnii, S. lugdunensis, and S. haemolyticus, we identified an approximately 25-kDa cross-reactive protein in each of the staphylococcal species examined. Taken together, these data suggest that SirR functions as a divalent metal cation-dependent transcriptional repressor which is widespread among the staphylococci.


1999 ◽  
Vol 181 (17) ◽  
pp. 5419-5425 ◽  
Author(s):  
N. Jamie Ryding ◽  
Maureen J. Bibb ◽  
Virginie Molle ◽  
Kim C. Findlay ◽  
Keith F. Chater ◽  
...  

ABSTRACT Sporulation mutants of Streptomyces coelicolor appear white because they are defective in the synthesis of the grey polyketide spore pigment, and such white (whi) mutants had been used to define eight sporulation loci, whiA,whiB, whiD, whiE, whiG,whiH, whiI, and whiJ (K. F. Chater, J. Gen. Microbiol. 72:9–28, 1972; N. J. Ryding, Ph.D. thesis, University of East Anglia, 1995). In an attempt to identify new whi loci, we mutagenized S. coelicolor M145 spores with nitrosoguanidine and identified 770 mutants with colonies ranging from white to medium grey. After excluding unstable strains, we examined the isolates by phase-contrast microscopy and chose 115 whi mutants with clear morphological phenotypes for further study. To exclude mutants representing cloned whi genes, self-transmissible SCP2*-derived plasmids carrying whiA, whiB,whiG, whiH, or whiJ (but notwhiD, whiE, or whiI) were introduced into each mutant by conjugation, and strains in which the wild-type phenotype was restored either partially or completely by any of these plasmids were excluded from further analysis. In an attempt to complement some of the remaining 31 whi mutants, an SCP2* library of wild-type S. coelicolor chromosomal DNA was introduced into 19 of the mutants by conjugation. Clones restoring the wild-type phenotype to 12 of the 19 strains were isolated and found to represent five distinct loci, designated whiK,whiL, whiM, whiN, andwhiO. Each of the five loci was located on the ordered cosmid library: whiL, whiM, whiN, and whiO occupied positions distinct from previously clonedwhi genes; whiK was located on the same cosmid overlap as whiD, but the two loci were shown by complementation to be distinct. The phenotypes resulting from mutations at each of these new loci are described.


1987 ◽  
Vol 7 (11) ◽  
pp. 3929-3936
Author(s):  
W W Roth ◽  
P W Bragg ◽  
M V Corrias ◽  
N S Reddy ◽  
J N Dholakia ◽  
...  

The eucaryotic elongation factor Tu (eEF-Tu) is a single polypeptide with an approximate Mr of 53,000. During protein synthesis eEF-Tu promotes the binding of aminoacyl-tRNA to the ribosome. To study the expression of the gene(s) for this factor, a genomic clone was isolated that contains a mouse eEF-Tu gene. We screened a phage genomic library with a synthetic oligonucleotide probe complementary to a region of the Saccharomyces cerevisiae and Artemia sp. eEF-Tu genes which codes for an area that is highly conserved between both yeast and Artemia sp. eEF-Tu. From approximately 75,000 phage plaques we obtained five isolates with apparently identical inserts. All five clones contained a 3.8-kilobase EcoRI fragment that hybridized to additional oligonucleotide probes corresponding to different conserved regions of eEF-Tu. We sequenced the 5' end of one genomic clone and determined the length of the cloned fragment that was protected by eEF-Tu mRNA in S1 nuclease protection assays. A quantitative S1 nuclease protection assay was used to compare the relative steady-state levels of eEF-Tu mRNA in total mRNA in total RNA isolated from hexamethylene-bisacetamide-induced murine erythroleukemia cells. The results show a dramatic reduction in the steady-state level of eEF-Tu mRNA as differentiation proceeds. A similar reduction in transcription of eEF-Tu mRNA was observed in isolated nuclei. Finally, we examined the in vivo synthesis of eEF-Tu during differentiation and found that it declined in a manner parallel to the decline in the steady-state level of eEF-Tu mRNA. In addition, we have isolated and sequenced a cDNA clone for mouse eEF-Tu. The derived amino acid sequence is compared with sequences from other eucaryotes.


Sign in / Sign up

Export Citation Format

Share Document