scholarly journals Evaluation of PCR-Generated Chimeras, Mutations, and Heteroduplexes with 16S rRNA Gene-Based Cloning

2001 ◽  
Vol 67 (2) ◽  
pp. 880-887 ◽  
Author(s):  
Xiaoyun Qiu ◽  
Liyou Wu ◽  
Heshu Huang ◽  
Patrick E. McDonel ◽  
Anthony V. Palumbo ◽  
...  

ABSTRACT To evaluate PCR-generated artifacts (i.e., chimeras, mutations, and heteroduplexes) with the 16S ribosomal DNA (rDNA)-based cloning approach, a model community of four species was constructed from alpha, beta, and gamma subdivisions of the division Proteobacteriaas well as gram-positive bacterium, all of which could be distinguished by HhaI restriction digestion patterns. The overall PCR artifacts were significantly different among the three TaqDNA polymerases examined: 20% for Z-Taq, with the highest processitivity; 15% for LA-Taq, with the highest fidelity and intermediate processitivity; and 7% for the conventionally used DNA polymerase, AmpliTaq. In contrast to the theoretical prediction, the frequency of chimeras for both Z-Taq(8.7%) and LA-Taq (6.2%) was higher than that for AmpliTaq (2.5%). The frequencies of chimeras and of heteroduplexes for Z-Taq were almost three times higher than those of AmpliTaq. The total PCR artifacts increased as PCR cycles and template concentrations increased and decreased as elongation time increased. Generally the frequency of chimeras was lower than that of mutations but higher than that of heteroduplexes. The total PCR artifacts as well as the frequency of heteroduplexes increased as the species diversity increased. PCR artifacts were significantly reduced by using AmpliTaq and fewer PCR cycles (fewer than 20 cycles), and the heteroduplexes could be effectively removed from PCR products prior to cloning by polyacrylamide gel purification or T7 endonuclease I digestion. Based upon these results, an optimal approach is proposed to minimize PCR artifacts in 16S rDNA-based microbial community studies.

Blood ◽  
1975 ◽  
Vol 46 (4) ◽  
pp. 509-518
Author(s):  
RJ Mayer ◽  
RG Smith ◽  
RC Gallo

At least three distinct DNA polymerases, named alpha, beta, and gamma, have been isolated from normal mammalian cells. The function of these enzymes in regard to DNA replication and repair remains unclear. Stimulation of blood lymphocytes with the plant mitogen phytohemagglutinin (PHA), is known to increase total DNA polymerase activity. In this study, we measured the change of each of these activities as lymphocytes intered a mitotic cycle. Aliquots of a pool of normal human blood lymphocytes were incubated with PHA for 0, 24, 48, and 72 hr, respectively, and the various DNA polymerase activities quantitated at each point. No significant DNA polymerase activity was detected in unstimulated cells. Low levels of polymerase beta were found at 24 hr. The average DNA content per cell doubled between 24 and 48 hr, and during this interval all three DNA polymerases increased to easily detectable levels. By far the greatest fractional increase in activity of all three polymerases was seen between 48 and 72 hr, after the average doubling of cellular DNA. In summary, these blood lymphocytes lack significant levels of DNA polymerases; stimulation with PHA induces all three of the major DNA polymerase species. In both these respects, these cells differ from other proliferating mammalian cell systems. The possible significance of this difference is discussed.


Blood ◽  
1975 ◽  
Vol 46 (4) ◽  
pp. 509-518 ◽  
Author(s):  
RJ Mayer ◽  
RG Smith ◽  
RC Gallo

Abstract At least three distinct DNA polymerases, named alpha, beta, and gamma, have been isolated from normal mammalian cells. The function of these enzymes in regard to DNA replication and repair remains unclear. Stimulation of blood lymphocytes with the plant mitogen phytohemagglutinin (PHA), is known to increase total DNA polymerase activity. In this study, we measured the change of each of these activities as lymphocytes intered a mitotic cycle. Aliquots of a pool of normal human blood lymphocytes were incubated with PHA for 0, 24, 48, and 72 hr, respectively, and the various DNA polymerase activities quantitated at each point. No significant DNA polymerase activity was detected in unstimulated cells. Low levels of polymerase beta were found at 24 hr. The average DNA content per cell doubled between 24 and 48 hr, and during this interval all three DNA polymerases increased to easily detectable levels. By far the greatest fractional increase in activity of all three polymerases was seen between 48 and 72 hr, after the average doubling of cellular DNA. In summary, these blood lymphocytes lack significant levels of DNA polymerases; stimulation with PHA induces all three of the major DNA polymerase species. In both these respects, these cells differ from other proliferating mammalian cell systems. The possible significance of this difference is discussed.


2005 ◽  
Vol 71 (12) ◽  
pp. 8966-8969 ◽  
Author(s):  
Silvia G. Acinas ◽  
Ramahi Sarma-Rupavtarm ◽  
Vanja Klepac-Ceraj ◽  
Martin F. Polz

ABSTRACT The contribution of PCR artifacts to 16S rRNA gene sequence diversity from a complex bacterioplankton sample was estimated. Taq DNA polymerase errors were found to be the dominant sequence artifact but could be constrained by clustering the sequences into 99% sequence similarity groups. Other artifacts (chimeras and heteroduplex molecules) were significantly reduced by employing modified amplification protocols. Surprisingly, no skew in sequence types was detected in the two libraries constructed from PCR products amplified for different numbers of cycles. Recommendations for modification of amplification protocols and for reporting diversity estimates at 99% sequence similarity as a standard are given.


1978 ◽  
Vol 175 (2) ◽  
pp. 519-524 ◽  
Author(s):  
R A Dicioccio ◽  
B I S Srivastava

Pyrans are co-polymers of divinyl ether and maleic anhydride. Four pyrans of various molecular weights more potently inhibited terminal deoxyribonucleotidyltransferase (EC 2.7.7.31) from a human cell line of acute lymphoblastic leukemia origin (Molt-4) than they did DNA polymerases alpha, beta and gamma from these cells and DNA polymerase from simian sarcoma virus. For example, the concentrations of one pyran required for 50% inhibition of terminal deoxynucleotidyltransferase, DNA polymerases alpha, beta and gamma and viral DNA polymerase were 0.9, 110, 125, 35 and 47 microgram/ml respectively. Quantitatively similar results were obtained with the other pyrans. Inhibition of these enzymes by pyran was dependent on the concentrations of both the bivalent cation and template/primer or initiator in assay mixtures, but not on the concentrations of the substrate (deoxyribonucleoside 5′-triphosphate), enzyme, or bovine serum albumin. These results suggested that pyran inhibited these enzymes by complexing bivalent cations, which caused a decreased affinity of template/primer or initiator for each enzyme and a decrease in enzyme activity.


2020 ◽  
Vol 2 (4) ◽  
pp. 89-92
Author(s):  
Muhammad Amir ◽  
Sabeera Afzal ◽  
Alia Ishaq

Polymerases were revealed first in 1970s. Most important to the modest perception the enzyme responsible for nuclear DNA replication that was pol , for DNA repair pol and for mitochondrial DNA replication pol  DNA construction and renovation done by DNA polymerases, so directing both the constancy and discrepancy of genetic information. Replication of genome initiate with DNA template-dependent fusion of small primers of RNA. This preliminary phase in replication of DNA demarcated as de novo primer synthesis which is catalyzed by specified polymerases known as primases. Sixteen diverse DNA-synthesizing enzymes about human perspective are devoted to replication, reparation, mutilation lenience, and inconsistency of nuclear DNA. But in dissimilarity, merely one DNA polymerase has been called in mitochondria. It has been suggest that PrimPol is extremely acting the roles by re-priming DNA replication in mitochondria to permit an effective and appropriate way replication to be accomplished. Investigations from a numeral of test site have significantly amplified our appreciative of the role, recruitment and regulation of the enzyme during DNA replication. Though, we are simply just start to increase in value the versatile roles that play PrimPol in eukaryote.


Genetics ◽  
1993 ◽  
Vol 134 (4) ◽  
pp. 1039-1044 ◽  
Author(s):  
I J Fijalkowska ◽  
R M Schaaper

Abstract The dnaE gene of Escherichia coli encodes the DNA polymerase (alpha subunit) of the main replicative enzyme, DNA polymerase III holoenzyme. We have previously identified this gene as the site of a series of seven antimutator mutations that specifically decrease the level of DNA replication errors. Here we report the nucleotide sequence changes in each of the different antimutator dnaE alleles. For each a single, but different, amino acid substitution was found among the 1,160 amino acids of the protein. The observed substitutions are generally nonconservative. All affected residues are located in the central one-third of the protein. Some insight into the function of the regions of polymerase III containing the affected residues was obtained by amino acid alignment with other DNA polymerases. We followed the principles developed in 1990 by M. Delarue et al. who have identified in DNA polymerases from a large number of prokaryotic and eukaryotic sources three highly conserved sequence motifs, which are suggested to contain components of the polymerase active site. We succeeded in finding these three conserved motifs in polymerase III as well. However, none of the amino acid substitutions responsible for the antimutator phenotype occurred at these sites. This and other observations suggest that the effect of these mutations may be exerted indirectly through effects on polymerase conformation and/or DNA/polymerase interactions.


1987 ◽  
Vol 84 (23) ◽  
pp. 8287-8291 ◽  
Author(s):  
G. H. Jung ◽  
M. C. Leavitt ◽  
J. C. Hsieh ◽  
J. Ito

1973 ◽  
Vol 51 (12) ◽  
pp. 1588-1597 ◽  
Author(s):  
David T. Denhardt ◽  
Makoto Iwaya ◽  
Grant McFadden ◽  
Gerald Schochetman

Evidence is presented that in Escherichia coli made permeable to nucleotides by exposure to toluene, the synthesis of a DNA chain complementary to the infecting single-stranded DNA of bacteriophage [Formula: see text] requires ATP as well as the four deoxyribonucleoside triphosphates. This synthesis results in the formation of the parental double-stranded replicative-form (RF) molecule. The ATP is not required simply to prevent degradation of the ribonucleoside or deoxyribonucleoside triphosphates; it can be partially substituted for by other ribonucleoside triphosphates.No single one of the known E. coli DNA polymerases appears to be uniquely responsible in vivo for the formation of the parental RF. Since [Formula: see text] replicates well in strains lacking all, or almost all, of the in-vitro activities of DNA polymerases I and II, neither of these two enzymes would seem essential; and in a temperature-sensitive E. coli mutant (dnaEts) deficient in DNA polmerase-I activity and possessing a temperature-sensitive DNA polymerase III, the viral single-stranded DNA is efficiently incorporated into an RF molecule at the restrictive temperature. In contrast, both RF replication and progeny single-stranded DNA synthesis are dependent upon DNA polymerase III activity.


Nematology ◽  
2009 ◽  
Vol 11 (6) ◽  
pp. 847-857 ◽  
Author(s):  
Lieven Waeyenberge ◽  
Nicole Viaene ◽  
Maurice Moens

Abstract ITS1, the 5.8S rRNA gene and ITS2 of the rDNA region were sequenced from 20 different Pratylenchus species. Additionally, the same region was sequenced from seven populations of P. penetrans. After purifying, cloning and sequencing the PCR products, all sequences were aligned in order to find unique sites suitable for the design of species-specific primers for P. penetrans. Since ITS regions showed variability between and even within populations of P. penetrans, only three small DNA sequences were suitable for the construction of three potentially useful species-specific primers. New species-specific primers were paired with existing universal ITS primers and tested in all possible primer combinations. The best performing primer set, supplemented with a universal 28S rDNA primer set that served as an internal control, was tested in duplex PCR. The ideal annealing temperature, Mg2+ concentration and primer ratios were then determined for the most promising primer set. The optimised duplex PCR was subsequently tested on a wide range of different Pratylenchus spp. and 25 P. penetrans populations originating from all over the world. To test the sensitivity, the duplex PCR was conducted on DNA extracted from a single P. penetrans nematode mixed with varying amounts of nematodes belonging to another Pratylenchus species. Results showed that a reliable and sensitive P. penetrans species-specific duplex PCR was constructed.


Sign in / Sign up

Export Citation Format

Share Document