scholarly journals Substrate Selectivity of a 3-Nitrophenol-Induced Metabolic System in Pseudomonas putida 2NP8 Transforming Nitroaromatic Compounds into Ammonia under Aerobic Conditions

2001 ◽  
Vol 67 (3) ◽  
pp. 1388-1391 ◽  
Author(s):  
Jian-Shen Zhao ◽  
Owen P. Ward

ABSTRACT The 3-nitrophenol-induced enzyme system in cells ofPseudomonas putida 2NP8 manifested a wide substrate range in transforming nitroaromatic compounds through to ammonia production. All of the 30 mono- or dinitroaromatic substrates except 4-nitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol, 3-nitroaniline, 2-nitrobenzoic acid, and 2-nitrofuran were quickly transformed. Ammonia production from most nitroaromatic substrates appeared to be stoichiometric.

2004 ◽  
Vol 186 (6) ◽  
pp. 1898-1901 ◽  
Author(s):  
M.-Mar González-Pérez ◽  
Juan L. Ramos ◽  
Silvia Marqués

ABSTRACT XylS controls the expression of the meta-cleavage pathway for the metabolism of benzoates in Pseudomonas putida KT2440. The xylS gene is expressed from two promoters, Ps1 and Ps2. Transcription from Ps2 is low and constitutive, whereas transcription from Ps1 is induced in the presence of toluene. In this study, we also show that translation of mRNA generated from Ps1 is 10 times more efficient than that generated from Ps2. This pattern of transcription and translation of xylS gives rise to two modes of activation of the promoter of the meta pathway operon (Pm) according to the concentration of XylS in the cell. In cells growing with benzoate, with small amounts of XylS, the activated XylS regulator binds the effector and stimulates transcription from Pm, whereas in cells growing with toluene, the high levels of XylS suffice to stimulate transcription from Pm even in the absence of XylS effectors.


2021 ◽  
Vol 22 (22) ◽  
pp. 12532
Author(s):  
Magalí F. Scocozza ◽  
Lígia O. Martins ◽  
Daniel H. Murgida

This work introduces a novel way to obtain catalytically competent oxyferryl species for two different dye-decolorizing peroxidases (DyPs) in the absence of H2O2 or any other peroxide by simply applying a reductive electrochemical potential under aerobic conditions. UV-vis and resonance Raman spectroscopies show that this method yields long-lived compounds II and I for the DyPs from Bacillus subtilis (BsDyP; Class I) and Pseudomonas putida (PpDyP; Class P), respectively. Both electrochemically generated high valent intermediates are able to oxidize ABTS at both acidic and alkaline pH. Interestingly, the electrocatalytic efficiencies obtained at pH 7.6 are very similar to the values recorded for regular catalytic ABTS/H2O2 assays at the optimal pH of the enzymes, ca. 3.7. These findings pave the way for the design of DyP-based electrocatalytic reactors operable in an extended pH range without the need of harmful reagents such as H2O2.


2018 ◽  
Vol 5 (8) ◽  
pp. 1325-1329 ◽  
Author(s):  
Jingya Yang ◽  
Dongtai Xie ◽  
Hongyan Zhou ◽  
Shuwen Chen ◽  
Congde Huo ◽  
...  

A visible-light-mediated α-hydroxylation of α-methylene ketones using atmospheric oxygen as a green oxidant has been developed with novel substrate selectivity.


2006 ◽  
Vol 72 (6) ◽  
pp. 4232-4238 ◽  
Author(s):  
Grit Neumann ◽  
Sjef Cornelissen ◽  
Frank van Breukelen ◽  
Steffi Hunger ◽  
Holger Lippold ◽  
...  

ABSTRACT The solvent-tolerant strain Pseudomonas putida DOT-T1E was grown in batch fermentations in a 5-liter bioreactor in the presence and absence of 10% (vol/vol) of the organic solvent 1-decanol. The growth behavior and cellular energetics, such as the cellular ATP content and the energy charge, as well as the cell surface hydrophobicity and charge, were measured in cells growing in the presence and absence of 1-decanol. Although the cells growing in the presence of 1-decanol showed an about 10% reduced growth rate and a 48% reduced growth yield, no significant differences were measured either in the ATP and potassium contents or in the energy charge, indicating that the cells adapted completely at the levels of membrane permeability and energetics. Although the bacteria needed additional energy for adaptation to the presence of the solvent, they were able to maintain or activate electron transport phosphorylation, allowing homeostasis of the ATP level and energy charge in the presence of the solvent, at the price of a reduced growth yield. On the other hand, significantly enhanced cell hydrophobicities and more negative cell surface charges were observed in cells grown in the presence of 1-decanol. Both reactions occurred within about 10 min after the addition of the solvent and were significantly different after killing of the cells with toxic concentrations of HgCl2. This adaptation of the surface properties of the bacterium to the presence of solvents seems to be very similar to previously observed reactions on the level of lipopolysaccharides, with which bacteria adapt to environmental stresses, such as heat shock, antibiotics, or low oxygen content. The results give clear physiological indications that the process with P. putida DOT-T1E as the biocatalyst and 1-decanol as the solvent is a stable system for two-phase biotransformations that will allow the production of fine chemicals in economically sound amounts.


Sign in / Sign up

Export Citation Format

Share Document