scholarly journals Biodesulfurization of Naphthothiophene and Benzothiophene through Selective Cleavage of Carbon-Sulfur Bonds by Rhodococcus sp. Strain WU-K2R

2002 ◽  
Vol 68 (8) ◽  
pp. 3867-3872 ◽  
Author(s):  
Kohtaro Kirimura ◽  
Toshiki Furuya ◽  
Rika Sato ◽  
Yoshitaka Ishii ◽  
Kuniki Kino ◽  
...  

ABSTRACT Naphtho[2,1-b]thiophene (NTH) is an asymmetric structural isomer of dibenzothiophene (DBT), and in addition to DBT derivatives, NTH derivatives can also be detected in diesel oil following hydrodesulfurization treatment. Rhodococcus sp. strain WU-K2R was newly isolated from soil for its ability to grow in a medium with NTH as the sole source of sulfur, and growing cells of WU-K2R degraded 0.27 mM NTH within 7 days. WU-K2R could also grow in the medium with NTH sulfone, benzothiophene (BTH), 3-methyl-BTH, or 5-methyl-BTH as the sole source of sulfur but could not utilize DBT, DBT sulfone, or 4,6-dimethyl-DBT. On the other hand, WU-K2R did not utilize NTH or BTH as the sole source of carbon. By gas chromatography-mass spectrometry analysis, desulfurized NTH metabolites were identified as NTH sulfone, 2′-hydroxynaphthylethene, and naphtho[2,1-b]furan. Moreover, since desulfurized BTH metabolites were identified as BTH sulfone, benzo[c][1,2]oxathiin S-oxide, benzo[c][1,2]oxathiin S,S-dioxide, o-hydroxystyrene, 2-(2′-hydroxyphenyl)ethan-1-al, and benzofuran, it was concluded that WU-K2R desulfurized NTH and BTH through the sulfur-specific degradation pathways with the selective cleavage of carbon-sulfur bonds. Therefore, Rhodococcus sp. strain WU-K2R, which could preferentially desulfurize asymmetric heterocyclic sulfur compounds such as NTH and BTH through the sulfur-specific degradation pathways, is a unique desulfurizing biocatalyst showing properties different from those of DBT-desulfurizing bacteria.

2004 ◽  
Vol 186 (15) ◽  
pp. 4951-4959 ◽  
Author(s):  
Daisuke Kasai ◽  
Eiji Masai ◽  
Keisuke Miyauchi ◽  
Yoshihiro Katayama ◽  
Masao Fukuda

ABSTRACT Sphingomonas paucimobilis SYK-6 is able to grow on various lignin-derived biaryls as the sole source of carbon and energy. These compounds are degraded to vanillate and syringate by the unique and specific enzymes in this strain. Vanillate and syringate are converted to protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively, by the tetrahydrofolate-dependent O-demethylases. Previous studies have suggested that these compounds are further degraded via the PCA 4,5-cleavage pathway. However, our subsequent analysis of the ligB insertion mutant, which encodes the β subunit of PCA 4,5-dioxygenase, suggested that at least one alternative route is involved in 3MGA degradation. In the present study, we isolated the desZ gene, which confers 3MGA degradation activity on Escherichia coli. The deduced amino acid sequence of desZ showed ca. 20 to 43% identity with the type II extradiol dioxygenases. Gas chromatography-mass spectrometry analysis suggested that DesZ catalyzes the 3,4-cleavage of 3MGA. Disruption of both desZ and ligB in SYK-6 resulted in loss of the dioxygen-dependent 3MGA transformation activity, but the resulting mutant retained the ability to grow on syringate. We found that the cell extract of the desZ ligB double mutant was able to convert 3MGA to gallate when tetrahydrofolate was added to the reaction mixture, and the cell extract of this mutant degraded gallate to the same degree as the wild type did. All these results suggest that syringate is degraded through multiple 3MGA degradation pathways in which ligAB, desZ, 3MGA O-demethylase, and gallate dioxygenase are participants.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6442 ◽  
Author(s):  
Cun Chen ◽  
Jing Cai ◽  
Song-qing Liu ◽  
Guo-liang Qiu ◽  
Xiao-gang Wu ◽  
...  

Garlic is used as a medicinal seasoning worldwide. The aim of this work was to compare four varieties of garlic: ‘Taicangbaipi’, ‘Ershuizao’, ‘Hongqixing’, and ‘Single-clove’; among them, ‘Ershuizao’ and ‘Hongqixing’ are unique to the Sichuan Province of China. Firstly, soluble sugar, starch, and the protein content of the garlic were analysed. There was more soluble sugar in ‘Single-clove’, total starch in ‘Hongqixing’, and protein content in ‘Ershuizao’ relative to the other three varieties, respectively. Gas chromatography–mass spectrometry analysis showed that ‘Ershuizao’ and ‘Hongqixing’ contained high levels of 5-hydroxymethylfurfural, which has antitumor, antioxidant, and cytoprotective effects. Indeed, the extracts from these two types of garlic were more effective at inhibiting tumour growth than that from the others. Moreover, the sulphide content and antimicrobial effects of ‘Ershuizao’ and ‘Hongqixing’ garlic were also higher than those of the other two types of garlic. In addition, changes observed in the membrane permeability and protein leakage suggest that the antimicrobial activity of the ‘Ershuizao’ and ‘Hongqixing’ extracts may be due to the destruction of the structural integrity of the cell membranes, leading to cell death.


1991 ◽  
Vol 26 (1) ◽  
pp. 1-16 ◽  
Author(s):  
T.P. Murphy ◽  
H. Brouwer ◽  
M.E. Fox ◽  
E. Nagy

Abstract Eighty-one sediment cores were collected to determine the extent of coal tar contamination in a toxic area of Hamilton Harbour. Over 800 samples were analyzed by a UV spectrophotometric technique that was standardized with gas chromatography/mass spectrometry analysis. The coal tar distribution was variable. The highest concentrations were near the Stelco outfalls and the Hamilton-Wentworth combined sewer outfalls. The total concentration of the 16 polynuclear aromatic hydrocarbons (PAHs) in 48,300 m3 of near-surface sediments exceeded 200 µg/g.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Tang ◽  
Dan Lei ◽  
Min Wu ◽  
Qiong Hu ◽  
Qing Zhang

Abstract Fenvalerate is a pyrethroid insecticide with rapid action, strong targeting, broad spectrum, and high efficiency. However, continued use of fenvalerate has resulted in its widespread presence as a pollutant in surface streams and soils, causing serious environmental pollution. Pesticide residues in the soil are closely related to food safety, yet little is known regarding the kinetics and metabolic behaviors of fenvalerate. In this study, a fenvalerate-degrading microbial strain, CD-9, isolated from factory sludge, was identified as Citrobacter freundii based on morphological, physio-biochemical, and 16S rRNA sequence analysis. Response surface methodology analysis showed that the optimum conditions for fenvalerate degradation by CD-9 were pH 6.3, substrate concentration 77 mg/L, and inoculum amount 6% (v/v). Under these conditions, approximately 88% of fenvalerate present was degraded within 72 h of culture. Based on high-performance liquid chromatography and gas chromatography-mass spectrometry analysis, ten metabolites were confirmed after the degradation of fenvalerate by strain CD-9. Among them, o-phthalaldehyde is a new metabolite for fenvalerate degradation. Based on the identified metabolites, a possible degradation pathway of fenvalerate by C. freundii CD-9 was proposed. Furthermore, the enzyme localization method was used to study CD-9 bacteria and determine that its degrading enzyme is an intracellular enzyme. The degradation rate of fenvalerate by a crude enzyme solution for over 30 min was 73.87%. These results showed that strain CD-9 may be a suitable organism to eliminate environmental pollution by pyrethroid insecticides and provide a future reference for the preparation of microbial degradation agents and environmental remediation.


2021 ◽  
pp. 030098582110021
Author(s):  
Yuta Takaichi ◽  
James K. Chambers ◽  
Moeko Shiroma-Kohyama ◽  
Makoto Haritani ◽  
Yumi Une ◽  
...  

Canavan disease is an autosomal recessive leukodystrophy caused by mutations in the gene encoding aspartoacylase (ASPA), which hydrolyses N-acetylaspartate (NAA) to acetate and aspartate. A similar feline neurodegenerative disease associated with a mutation in the ASPA gene is reported herein. Comprehensive clinical, genetic, and pathological analyses were performed on 4 affected cats. Gait disturbance and head tremors initially appeared at 1 to 19 months of age. These cats eventually exhibited dysstasia and seizures and died at 7 to 53 months of age. Magnetic resonance imaging of the brain revealed diffuse symmetrical intensity change of the cerebral cortex, brainstem, and cerebellum. Gas chromatography–mass spectrometry analysis of urine showed significant excretion of NAA. Genetic analysis of the 4 affected cats identified a missense mutation (c.859G>C) in exon 6 of the ASPA gene, which was not detected in 4 neurologically intact cats examined as controls. Postmortem analysis revealed vacuolar changes predominantly distributed in the gray matter of the cerebrum and brain stem as well as in the cerebellar Purkinje cell layer. Immunohistochemically, these vacuoles were surrounded by neurofilaments and sometimes contained MBP- and Olig2-positive cells. Ultrastructurally, a large number of intracytoplasmic vacuoles containing mitochondria and electron-dense granules were detected in the cerebral cortex. All 4 cats were diagnosed as spongy encephalopathy with a mutation in the ASPA gene, a syndrome analogous to human Canavan disease. The histopathological findings suggest that feline ASPA deficiency induces intracytoplasmic edema in neurons and oligodendrocytes, resulting in spongy degeneration of the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document