scholarly journals Functional Expression of a Fungal Laccase in Saccharomyces cerevisiae by Directed Evolution

2003 ◽  
Vol 69 (2) ◽  
pp. 987-995 ◽  
Author(s):  
Thomas Bulter ◽  
Miguel Alcalde ◽  
Volker Sieber ◽  
Peter Meinhold ◽  
Christian Schlachtbauer ◽  
...  

ABSTRACT Laccase from Myceliophthora thermophila (MtL) was expressed in functional form in Saccharomyces cerevisiae. Directed evolution improved expression eightfold to the highest yet reported for a laccase in yeast (18 mg/liter). Together with a 22-fold increase in k cat, the total activity was enhanced 170-fold. Specific activities of MtL mutants toward 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and syringaldazine indicate that substrate specificity was not changed by the introduced mutations. The most effective mutation (10-fold increase in total activity) introduced a Kex2 protease recognition site at the C-terminal processing site of the protein, adjusting the protein sequence to the different protease specificities of the heterologous host. The C terminus is shown to be important for laccase activity, since removing it by a truncation of the gene reduces activity sixfold. Mutations accumulated during nine generations of evolution for higher activity decreased enzyme stability. Screening for improved stability in one generation produced a mutant more stable than the heterologous wild type and retaining the improved activity. The molecular mass of MtL expressed in S. cerevisiae is 30% higher than that of the same enzyme expressed in M. thermophila (110 kDa versus 85 kDa). Hyperglycosylation, corresponding to a 120-monomer glycan on one N-glycosylation site, is responsible for this increase. This S. cerevisiae expression system makes MtL available for functional tailoring by directed evolution.

2011 ◽  
Vol 78 (5) ◽  
pp. 1370-1384 ◽  
Author(s):  
S. Camarero ◽  
I. Pardo ◽  
A. I. Cañas ◽  
P. Molina ◽  
E. Record ◽  
...  

ABSTRACTWhile thePycnoporus cinnabarinuslaccase (PcL) is one of the most promising high-redox-potential enzymes for environmental biocatalysis, its practical use has to date remained limited due to the lack of directed evolution platforms with which to improve its features. Here, we describe the construction of a PcL fusion gene and the optimization of conditions to induce its functional expression inSaccharomyces cerevisiae, facilitating its directed evolution and semirational engineering. The native PcL signal peptide was replaced by the α-factor preproleader, and this construct was subjected to six rounds of evolution coupled to a multiscreening assay based on the oxidation of natural and synthetic redox mediators at more neutral pHs. The laccase total activity was enhanced 8,000-fold: the evolved α-factor preproleader improved secretion levels 40-fold, and several mutations in mature laccase provided a 13.7-fold increase inkcat. While the pH activity profile was shifted to more neutral values, the thermostability and the broad substrate specificity of PcL were retained. Evolved variants were highly secreted byAspergillus niger(∼23 mg/liter), which addresses the potential use of this combined-expression system for protein engineering. The mapping of mutations onto the PcL crystal structure shed new light on the oxidation of phenolic and nonphenolic substrates. Furthermore, some mutations arising in the evolved preproleader highlighted its potential for heterologous expression of fungal laccases in yeast (S. cerevisiae).


2004 ◽  
Vol 377 (2) ◽  
pp. 459-467 ◽  
Author(s):  
Jose M. LAPLAZA ◽  
Magnolia BOSTICK ◽  
Derek T. SCHOLES ◽  
M. Joan CURCIO ◽  
Judy CALLIS

In Saccharomyces cerevisiae, the ubiquitin-like protein Rub1p (related to ubiquitin 1 protein) covalently attaches to the cullin protein Cdc53p (cell division cycle 53 protein), a subunit of a class of ubiquitin E3 ligases named SCF (Skp1–Cdc53–F-box protein) complex. We identified Rtt101p (regulator of Ty transposition 101 protein, where Ty stands for transposon of yeast), initially found during a screen for proteins to confer retrotransposition suppression, and Cul3p (cullin 3 protein), a protein encoded by the previously uncharacterized open reading frame YGR003w, as two new in vivo targets for Rub1p conjugation. These proteins show significant identity with Cdc53p and, therefore, are cullin proteins. Modification of Cul3p is eliminated by deletion of the Rub1p pathway through disruption of either RUB1 or its activating enzyme ENR2/ULA1. The same disruptions in the Rub pathway decreased the percentage of total Rtt101p that is modified from approx. 60 to 30%. This suggests that Rtt101p has an additional RUB1- and ENR2-independent modification. All modified forms of Rtt101p and Cul3p were lost when a single lysine residue in a conserved region near the C-terminus was replaced by an arginine residue. These results suggest that this lysine residue is the site of Rub1p-dependent and -independent modifications in Rtt101p and of Rub1p-dependent modification in Cul3p. An rtt101Δ strain was hypersensitive to thiabendazole, isopropyl (N-3-chlorophenyl) carbamate and methyl methanesulphonate, but rub1Δ strains were not. Whereas rtt101Δ strains exhibited a 14-fold increase in Ty1 transposition, isogenic rub1Δ strains did not show statistically significant increases. Rtt101K791Rp, which cannot be modified, complemented for Rtt101p function in a transposition assay. Altogether, these results suggest that neither the RUB1-dependent nor the RUB1-independent form of Rtt101p is required for Rtt101p function. The identification of additional Rub1p targets in S. cerevisiae suggests an expanded role for Rub in this organism.


2003 ◽  
Vol 69 (8) ◽  
pp. 5037-5037 ◽  
Author(s):  
Thomas Bulter ◽  
Miguel Alcalde ◽  
Volker Sieber ◽  
Peter Meinhold ◽  
Christian Schlachtbauer ◽  
...  

Author(s):  
Julian Ruediger ◽  
Wilfried Schwab

The biotechnological production of glycosides is an economically competitive manufacturing alternative to classical chemical synthesis. Through continuous production improvement, glycosides can now be used in low-cost products by various industries. However, many production systems still suffer from low yields. Directed evolution, coupled with a suitable screening method, can tackle this challenge. We generated glycosyltransferase mutants through error-prone-PCR and screened the library using a small-scale whole-cell biotransformation system. The screening of only 176 colonies yielded three putative candidates. Detailed investigations revealed that the reason for the increase in product titer was mainly due to different expression effects of the mutagenized genes rather than improved enzyme kinetics. In total, a 60-fold increase in product formation was achieved. Therefore, in addition to the quality of the mutant library, an efficient and stable expression system is crucial to achieve high concentrations of active enzyme and product, as formation of inclusion bodies and other inactive forms of the biocatalyst reduces productivity.


2014 ◽  
Vol 80 (11) ◽  
pp. 3496-3507 ◽  
Author(s):  
Patricia Molina-Espeja ◽  
Eva Garcia-Ruiz ◽  
David Gonzalez-Perez ◽  
René Ullrich ◽  
Martin Hofrichter ◽  
...  

ABSTRACTUnspecific peroxygenase (UPO) represents a new type of heme-thiolate enzyme with self-sufficient mono(per)oxygenase activity and many potential applications in organic synthesis. With a view to taking advantage of these properties, we subjected theAgrocybe aegeritaUPO1-encoding gene to directed evolution inSaccharomyces cerevisiae. To promote functional expression, several different signal peptides were fused to the mature protein, and the resulting products were tested. Over 9,000 clones were screened using anad hocdual-colorimetric assay that assessed both peroxidative and oxygen transfer activities. After 5 generations of directed evolution combined with hybrid approaches, 9 mutations were introduced that resulted in a 3,250-fold total activity improvement with no alteration in protein stability. A breakdown between secretion and catalytic activity was performed by replacing the native signal peptide of the original parental type with that of the evolved mutant; the evolved leader increased functional expression 27-fold, whereas an 18-fold improvement in thekcat/Kmvalue for oxygen transfer activity was obtained. The evolved UPO1 was active and highly stable in the presence of organic cosolvents. Mutations in the hydrophobic core of the signal peptide contributed to enhance functional expression up to 8 mg/liter, while catalytic efficiencies for peroxidative and oxygen transfer reactions were increased by several mutations in the vicinity of the heme access channel. Overall, the directed-evolution platform described is a valuable point of departure for the development of customized UPOs with improved features and for the study of structure-function relationships.


Author(s):  
Patricia Gomez de Santos ◽  
Manh Dat Hoang ◽  
Jan Kiebist ◽  
Harald Kellner ◽  
René Ullrich ◽  
...  

Fungal unspecific peroxygenases (UPOs) are emergent biocatalysts that perform highly selective C-H oxyfunctionalizations of organic compounds, yet their heterologous production at high levels is required for their practical use in synthetic chemistry. Here, we achieved functional expression in yeast of two new unusual acidic peroxygenases from Candolleomyces ( Psathyrella ) aberdarensis ( Pab UPO) and their production at large scale in bioreactor. Our strategy was based on adopting secretion mutations from Agrocybe aegerita UPO mutant −PaDa-I variant− designed by directed evolution for functional expression in yeast, which belongs to the same phylogenetic family as Pab UPOs –long-type UPOs− and that shares 65% sequence identity. After replacing the native signal peptides by the evolved leader sequence from PaDa-I, we constructed and screened site-directed recombination mutant libraries yielding two recombinant Pab UPOs with expression levels of 5.4 and 14.1 mg/L in S. cerevisiae . These variants were subsequently transferred to P. pastoris for overproduction in fed-batch bioreactor, boosting expression levels up to 290 mg/L with the highest volumetric activity achieved to date for a recombinant peroxygenase (60,000 U/L, with veratryl alcohol as substrate). With a broad pH activity profile, ranging from 2.0 to 9.0, these highly secreted, active and stable peroxygenases are promising tools for future engineering endeavors, as well as for their direct application in different industrial and environmental settings. IMPORTANCE In this work, we incorporated several secretion mutations from an evolved fungal peroxygenase to enhance the production of active and stable forms of two unusual acidic peroxygenases. The tandem-yeast expression system based on S. cerevisiae for directed evolution and P. pastoris for overproduction in a ∼300 mg/L scale, is a versatile tool to generate UPO variants. By employing this approach, we foresee that acidic UPO variants will be more readily engineered in the near future and adapted to practical enzyme cascade reactions that can be performed over a broad pH range to oxyfunctionalize a variety of organic compounds.


2020 ◽  
Vol 21 (12) ◽  
pp. 4547 ◽  
Author(s):  
Abhinav R. Jain ◽  
Anne S. Robinson

The adenosine A3 receptor (A3R) is the only adenosine receptor subtype to be overexpressed in inflammatory and cancer cells and therefore is considered a novel and promising therapeutic target for inflammatory diseases and cancer. Heterologous expression of A3R at levels to allow biophysical characterization is a major bottleneck in structure-guided drug discovery efforts. Here, we apply protein engineering using chimeric receptors to improve expression and activity in yeast. Previously we had reported improved expression and trafficking of the chimeric A1R variant using a similar approach. In this report, we constructed chimeric A3/A2AR comprising the N-terminus and transmembrane domains from A3R (residues 1–284) and the cytoplasmic C-terminus of the A2AR (residues 291–412). The chimeric receptor showed approximately 2-fold improved expression with a 2-fold decreased unfolded protein response when compared to wild type A3R. Moreover, by varying culture conditions such as initial cell density and induction temperature a further 1.7-fold increase in total receptor yields was obtained. We observed native-like coupling of the chimeric receptor to Gai-Gpa1 in engineered yeast strains, activating the downstream, modified MAPK pathway. This strategy of utilizing chimeric receptor variants in yeast thus provides an exciting opportunity to improve expression and activity of “difficult-to-express” receptors, expanding the opportunity for utilizing yeast in drug discovery.


2018 ◽  
Vol 115 (7) ◽  
pp. 1666-1674 ◽  
Author(s):  
Javier Viña-Gonzalez ◽  
Katarina Elbl ◽  
Xavier Ponte ◽  
Francisco Valero ◽  
Miguel Alcalde

1993 ◽  
Vol 70 (03) ◽  
pp. 454-457 ◽  
Author(s):  
Claus Bregengaard ◽  
Ole Nordfang ◽  
Per Østergaard ◽  
Jens G L Petersen ◽  
Giorgio Meyn ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) is a feed back inhibitor of the initial activation of the extrinsic pathway of coagulation. In humans, injection of heparin results in a 2-6 fold increase in plasma TFPI and recent studies suggest that TFPI may be important for the anticoagulant activity of heparin. Full length (FL) TFPI, but not recombinant two-domain (2D) TFPI, has a poly cationic C-terminus showing very strong heparin binding. Therefore, we have investigated if heparin affects the pharmacokinetics of TFPI with and without this C-terminus.FL-TFPI (608 U/kg) and 2D-TFPI (337 U/kg) were injected intravenously in rabbits with and without simultaneous intravenous injections of low molecular weight heparin (450 anti-XaU/kg).Heparin decreased the volume of distribution and the clearance of FL-TFPI by a factor 10-15, whereas the pharmacokinetics of 2D-TFPI were unaffected by heparin. When heparin was administered 2 h following TFPI the recovery of FL-TFPI was similar to that found in the group receiving the two compounds simultaneously, suggesting that the releasable pool of FL-TFPI is removed very slowly in the absence of circulating heparin.


Sign in / Sign up

Export Citation Format

Share Document