scholarly journals Prevalence and Molecular Characterization of Tetracycline Resistance in Enterococcus Isolates from Food

2004 ◽  
Vol 70 (3) ◽  
pp. 1555-1562 ◽  
Author(s):  
Geert Huys ◽  
Klaas D'Haene ◽  
Jean-Marc Collard ◽  
Jean Swings

ABSTRACT In the present study, a collection of 187 Enterococcus food isolates mainly originating from European cheeses were studied for the phenotypic and genotypic assessment of tetracycline (TC) resistance. A total of 45 isolates (24%) encompassing the species Enterococcus faecalis (n = 33), E. durans (n = 7), E. faecium (n = 3), E. casseliflavus (n = 1), and E. gallinarum (n = 1) displayed phenotypic resistance to TC with MIC ranges of 16 to 256 μg/ml. Eight of these strains exhibited multiresistance to TC, erythromycin, and chloramphenicol. By PCR detection, TC resistance could be linked to the presence of the tet(M) (n = 43), tet(L) (n = 16), and tet(S) (n = 1) genes. In 15 isolates, including all of those for which the MIC was 256 μg/ml, both tet(M) and tet(L) were found. Furthermore, all tet(M)-containing enterococci also harbored a member of the Tn916-Tn1545 conjugative transposon family, of which 12 erythromycin-resistant isolates also contained the erm(B) gene. Filter mating experiments revealed that 10 E. faecalis isolates, 3 E. durans isolates, and 1 E. faecium isolate could transfer either tet(M), tet(L), or both of these genes to E. faecalis recipient strain JH2-2. In most cases in which only tet(M) was transferred, no detectable plasmids were acquired by JH2-2 but instead all transconjugants contained a member of the Tn916-Tn1545 family. Sequencing analysis of PCR amplicons and evolutionary modeling showed that a subset of the transferable tet(M) genes belonged to four sequence homology groups (SHGs) showing an internal homology of ≥99.6%. Two of these SHGs contained tet(M) mosaic structures previously found in Tn916 elements and on Lactobacillus and Neisseria plasmids, respectively, whereas the other two SHGs probably represent new phylogenetic lineages of this gene.

2015 ◽  
Vol 61 (2) ◽  
pp. 124-130
Author(s):  
Yongping Ma ◽  
Ting-ting Xie ◽  
Qiongwen Hu ◽  
Zongyin Qiu ◽  
Fangzhou Song

A resident plasmid, pBIF10, was isolated from Bifidobacterium longum B200304, and the full-length sequence of pBIF10 was analyzed. In this sequence, we identified at least 17 major open reading frames longer than 200 bp. A tetracycline resistance gene, tetQ, was identified and verified to confer antibiotic resistance to tetracycline. The plasmid replicon with replication protein B gene (repB) and a typical iteron was identified in pBIF10. An artificial clone vector was constructed with the replicon of pBIF10; the results showed that repB controlled plasmid replication in other bifidobacteria host cells at low transformation frequency. Taken together, the analysis and characterization of pBIF10 provided necessary information for the understanding of antibiotic resistance mediated by a plasmid in a Bifidobacterium strain. GC% and repB sequence analyses indicated that pBIF10 was a molecular hybrid of at least 2 other bacterial genera plasmids.


Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1051-1060
Author(s):  
Claire Remacle ◽  
Denis Baurain ◽  
Pierre Cardol ◽  
René F Matagne

Abstract The mitochondrial rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) comprises more than 30 subunits, the majority of which are encoded by the nucleus. In Chlamydomonas reinhardtii, only five components of complex I are coded for by mitochondrial genes. Three mutants deprived of complex I activity and displaying slow growth in the dark were isolated after mutagenic treatment with acriflavine. A genetical analysis demonstrated that two mutations (dum20 and dum25) affect the mitochondrial genome whereas the third mutation (dn26) is of nuclear origin. Recombinational analyses showed that dum20 and dum25 are closely linked on the genetic map of the mitochondrial genome and could affect the nd1 gene. A sequencing analysis confirmed this conclusion: dum20 is a deletion of one T at codon 243 of nd1; dum25 corresponds to a 6-bp deletion that eliminates two amino acids located in a very conserved hydrophilic segment of the protein.


2021 ◽  
Vol 9 (1) ◽  
pp. 98
Author(s):  
Seon Young Park ◽  
Mingyung Lee ◽  
Se Ra Lim ◽  
Hyemin Kwon ◽  
Ye Seul Lee ◽  
...  

S. bovis/S. equinus complex (SBSEC) includes lactic acid-producing bacteria considered as the causative agent associated with acute rumen lactic acidosis in intensive ruminants. Considering the limited information on the detailed characteristics and diversity of SBSEC in Korea and the emergence of antimicrobial resistance (AMR), we investigated the diversity of SBSEC from domestic ruminants and verified the presence of antimicrobial resistance genes (ARGs) against several antimicrobials with their phenotypic resistance. Among 51 SBSEC isolates collected, two SBSEC members (S. equinus and S. lutetiensis) were identified; sodA-based phylogenetic analyses and comparisons of overall genome relatedness revealed potential plasticity and diversity. The AMR rates of these SBSEC against erythromycin, clindamycin, and tetracycline were relatively lower than those of other SBSEC isolates of a clinical origin. An investigation of the ARGs against those antimicrobials indicated that tetracycline resistance of SBSECs generally correlated with the presence of tet(M)-possessing Tn916-like transposon. However, no correlation between the presence of ARGs and phenotypic resistance to erythromycin and clindamycin was observed. Although a limited number of animals and their SBSEC isolates were examined, this study provides insights into the potential intraspecies biodiversity of ruminant-origin SBSEC and the current status on antimicrobial resistance of the bacteria in the Korean livestock industry.


2008 ◽  
Vol 74 (6) ◽  
pp. 1740-1747 ◽  
Author(s):  
Andrew Dopheide ◽  
Gavin Lear ◽  
Rebecca Stott ◽  
Gillian Lewis

ABSTRACT Free-living protozoa are thought to be of fundamental importance in aquatic ecosystems, but there is limited understanding of their diversity and ecological role, particularly in surface-associated communities such as biofilms. Existing eukaryote-specific PCR primers were used to survey 18S rRNA gene sequence diversity in stream biofilms but poorly revealed protozoan diversity, demonstrating a need for protozoan-targeted primers. Group-specific PCR primers targeting 18S rRNA genes of the protozoan phylum Ciliophora were therefore designed and tested using DNA extracted from cultured protozoan isolates. The two most reliable primer combinations were applied to stream biofilm DNA, followed by cloning and sequencing analysis. Of 44 clones derived from primer set 384F/1147R, 86% were of probable ciliate origin, as were 25% of 44 clones detected by primer set 121F/1147R. A further 29% of 121F/1147R-detected clones matched sequences from the closely related phylum Apicomplexa. The highly ciliate-specific primer set 384F/1147R was subsequently used in PCRs on biofilm DNA from four streams exhibiting different levels of human impact, revealing differences in ciliate sequence diversity in samples from each site. Of a total of 240 clones, 73% were of probable ciliate origin; 54 different putative ciliate sequences were detected from throughout seven taxonomic ciliate classes. Sequences from Oligohymenophorea were most commonly detected in all samples, followed by either Spirotrichea or Phyllopharyngea. Restriction fragment length polymorphism profile-based analysis of clones suggested a potentially higher level of diversity than did sequencing. Nevertheless, newly designed PCR primers 384F/1147R were considered to provide an effective molecular basis for characterization of ciliate diversity in stream biofilms.


2020 ◽  
Vol 85 (4) ◽  
pp. 1005-1015
Author(s):  
Kentaro Ochi ◽  
Maho Tokuda ◽  
Kosuke Yanagiya ◽  
Chiho Suzuki-Minakuchi ◽  
Hideaki Nojiri ◽  
...  

ABSTRACT The frequency of transconjugants were compared for the incompatibility (Inc) P-1 and P-7 plasmids pBP136 and pCAR1 under aerobic and anaerobic conditions. Filter mating assays were performed with one donor strain and one recipient strain using different donors of Pseudomonas and recipient strains, including Pseudomonas, Pantoea, and Buttiauxella. Under anaerobic condition, frequencies of transconjugants for both plasmids were 101-103-fold lower than those under aerobic condition regardless of whether aerobically or anaerobically grown donors and recipients were used. To compare the transconjugant ranges under aerobic and anaerobic conditions, conjugation was performed between the donor of pBP136 and recipient bacteria extracted from environmental samples. Several transconjugants were uniquely obtained from each aerobic or anaerobic condition. Our findings indicate that a plasmid can differently spread among bacteria depending on the oxygen concentrations of the environment.


Author(s):  
Jelena Grbić ◽  
George Simmons ◽  
Marina Ilyasova ◽  
Taras Panov

We link distinct concepts of geometric group theory and homotopy theory through underlying combinatorics. For a flag simplicial complex $K$ , we specify a necessary and sufficient combinatorial condition for the commutator subgroup $RC_K'$ of a right-angled Coxeter group, viewed as the fundamental group of the real moment-angle complex $\mathcal {R}_K$ , to be a one-relator group; and for the Pontryagin algebra $H_{*}(\Omega \mathcal {Z}_K)$ of the moment-angle complex to be a one-relator algebra. We also give a homological characterization of these properties. For $RC_K'$ , it is given by a condition on the homology group $H_2(\mathcal {R}_K)$ , whereas for $H_{*}(\Omega \mathcal {Z}_K)$ it is stated in terms of the bigrading of the homology groups of $\mathcal {Z}_K$ .


2015 ◽  
Vol 7 (3) ◽  
pp. 272-280 ◽  
Author(s):  
Ifeoma Chinyere UGWU ◽  
Madubuike Umunna ANYANWU ◽  
Chidozie Clifford UGWU ◽  
Ogbonna Wilfred UGWUANYI

This study was conducted to isolate generic extended-spectrum β-lactam (ESBL)-resistant enterobacteria from pigs reared in Enugu State Southeast, Nigeria and determine the antibacterial resistance profile of the isolates. Rectal swabs were collected from 190, randomly selected, apparently healthy pigs. Isolation of ESBL-resistant enterobacteria was done using Mac Conkey agar supplemented with 2 µg/ml of cefotaxime. Phenotypic characterization of the isolates to generic level was done following standard biochemical methods. Phenotypic resistance of the isolates to antibacterial agents was determined using the disc diffusion method. Out of 46 ESBL-resistant enterobacterial isolates, 4 (8.7%) were Escherichia coli, 11 (23.9%) were Salmonella species, while 31 (67.4%) were Klebsiella species. Resistance of the Salmonella isolates was 45.5% to ciprofloxacin, 36.4% to ofloxacin and levofloxacin, 9.1% to norfloxacin, amikacin and gentamicin, 27.3% to streptomycin, 72.7% to chloramphenicol and 90.9% to tetracycline. Resistance of the Klebsiella isolates was 93.5% to ampicillin, 12.9% to ciprofloxacin, 19.4% to ofloxacin and levofloxacin, 9.7% to norfloxacin and streptomycin, 64.5% to chloramphenicol and 38.7% to tetracycline. Resistance of the E. coli isolates was 100% to gentamicin, 75% to ampicillin and streptomycin, 50% to ciprofloxacin, norfloxacin, chloramphenicol and tetracycline, and 25% to ofloxacin, levofloxacin and amikacin. All the isolates were resistant to ceftriaxone, cefotaxime, ceftazidime, cefepime, cefpodoxime, amoxicillin/clavulanic acid and aztreonam. Resistance of the isolates to more than 3 classes of antibacterial agents tested was 54.8% for Klebsiella, 90.9% for Salmonella and 100% for E. coli, respectively. This study has shown that pigs reared in Enugu State Southeast, Nigeria, are colonized by ESBL-resistant Enterobactericeae and are potential reservoirs and disseminators of these organisms.


2021 ◽  
Vol 25 (2) ◽  
pp. 234-245
Author(s):  
A. V. Bardasheva ◽  
N. V. Fomenko ◽  
T. V. Kalymbetova ◽  
I. V. Babkin ◽  
S. O. Chretien ◽  
...  

72 clinical strains of Klebsiella spp. isolated from samples obtained from humans in Novosibirsk, Russia, were analyzed. Species identification of strains was performed using 16S rRNA and rpoB gene sequences. It was revealed that Klebsiella pneumoniae strains were dominant in the population (57 strains), while the remaining 15 strains were K. grimontii, K. aerogenes, K. oxytoca and K. quasipneumoniae. By molecular serotyping using the wzi gene sequence, K. pneumoniae strains were assigned to twenty-one K-serotypes with a high proportion of virulent K1- and K2-serotypes. It was found that K. pneumoniae strains isolated from the hospitalized patients had a higher resistance to antibiotics compared to the other Klebsiella species. Real-time PCR revealed that the population contained genes of the blaSHV, blaTEM, blaCTX families and the blaOXA-48 gene, which are the genetic determinants of beta-lactam resistance. It has been shown that the presence of the blaCTX sequence correlated with the production of extended-spectrum beta-lactamases, and phenotypic resistance to car-bapenems is due to the presence of the blaOXA-48 gene. At the same time, the carbapenemase genes vim, ndm, kpc, imp were not detected. Among the aminoglycoside resistance genes studied, the aph(6)-Id and aadA genes were found, but their presence did not always coincide with phenotypic resistance. Resistance to fluoroquinolones in the vast majority of strains was accompanied by the presence of the aac(6’)-IB-cr, oqxA, oqxB, qnrB, and qnrS genes in various combinations, while the presence of the oqxA and/or oqxB genes alone did not correlate with resistance to fluoroquinolones. Thus, the detection of blaCTX and blaOXA-48 can be used to quickly predict the production of extended-spectrum beta-lactamases and to determine the resistance of Klebsiella to carbapenems. The detection of the aac(6’)-Ib-cr and/or qnrB/qnrS genes can be used to quickly determine resistance to fluoroquinolones.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaonan Zhao ◽  
Ming Hu ◽  
Cui Zhao ◽  
Qing Zhang ◽  
Lulu Li ◽  
...  

Staphylococcus aureus (S. aureus) is now regarded as a zoonotic agent. Methicillin-susceptible S. aureus (MSSA) ST398 is a livestock-associated bacterium that is most prevalent in China, but there are currently no data available for Shandong. Therefore, the aim of this study was to investigate the epidemiology and characterization of MSSA ST398 from retail pork and bulk tank milk (BTM) in Shandong. A total of 67 S. aureus isolates were collected from retail pork between November 2017 and June 2018. Among the isolates, high antimicrobial resistance rates were observed for penicillin (97.0%), and 92.5% of the isolates were multi-drug resistant (MDR). Eight sequence types (STs) were identified in the retail pork isolates, and the predominant type was ST15 (n=26), which was followed by ST398 (n=14). Staphylococcal protein A gene (spa) typing identified spa types t034 and t1255 in MSSA ST398 from retail pork. Using whole-genome sequencing analysis, we described the phylogeny of 29 MSSA ST398 isolates that were obtained from retail pork (n=14) and BTM (n=15). The phylogenetic tree showed that the MSSA ST398 isolates from different sources had the same lineage. Among the 29 MSSA ST398 isolates, five resistance genes were detected, and all isolates carried DHA-1. Fifteen toxin genes were detected, and all isolates carried eta, hla, and hlb. In conclusion, this study found that a high risk for MSSA ST398 was present in retail pork and BTM. These findings have major implications for how investigations of MSSA ST398 outbreaks should be conducted in the One-Health context.


Sign in / Sign up

Export Citation Format

Share Document