One-relator groups and algebras related to polyhedral products
We link distinct concepts of geometric group theory and homotopy theory through underlying combinatorics. For a flag simplicial complex $K$ , we specify a necessary and sufficient combinatorial condition for the commutator subgroup $RC_K'$ of a right-angled Coxeter group, viewed as the fundamental group of the real moment-angle complex $\mathcal {R}_K$ , to be a one-relator group; and for the Pontryagin algebra $H_{*}(\Omega \mathcal {Z}_K)$ of the moment-angle complex to be a one-relator algebra. We also give a homological characterization of these properties. For $RC_K'$ , it is given by a condition on the homology group $H_2(\mathcal {R}_K)$ , whereas for $H_{*}(\Omega \mathcal {Z}_K)$ it is stated in terms of the bigrading of the homology groups of $\mathcal {Z}_K$ .