scholarly journals Patterns of Cryptosporidium Oocyst Shedding by Eastern Grey Kangaroos Inhabiting an Australian Watershed

2005 ◽  
Vol 71 (10) ◽  
pp. 6159-6164 ◽  
Author(s):  
Michelle L. Power ◽  
Nicholas C. Sangster ◽  
Martin B. Slade ◽  
Duncan A. Veal

ABSTRACT The occurrence of Cryptosporidium oocysts in feces from a population of wild eastern grey kangaroos inhabiting a protected watershed in Sydney, Australia, was investigated. Over a 2-year period, Cryptosporidium oocysts were detected in 239 of the 3,557 (6.7%) eastern grey kangaroo fecal samples tested by using a combined immunomagnetic separation and flow cytometric technique. The prevalence of Cryptosporidium in this host population was estimated to range from 0.32% to 28.5%, with peaks occurring during the autumn months. Oocyst shedding intensity ranged from below 20 oocysts/g feces to 2.0 × 106 oocysts/g feces, and shedding did not appear to be associated with diarrhea. Although morphologically similar to the human-infective Cryptosporidium hominis and the Cryptosporidium parvum “bovine” genotype oocysts, the oocysts isolated from kangaroo feces were identified as the Cryptosporidium “marsupial” genotype I or “marsupial” genotype II. Kangaroos are the predominant large mammal inhabiting Australian watersheds and are potentially a significant source of Cryptosporidium contamination of drinking water reservoirs. However, this host population was predominantly shedding the marsupial-derived genotypes, which to date have been identified only in marsupial host species.

Parasitology ◽  
2013 ◽  
Vol 140 (14) ◽  
pp. 1735-1740 ◽  
Author(s):  
MARIANNE LEBBAD ◽  
JESSICA BESER ◽  
MONA INSULANDER ◽  
LILLEMOR KARLSSON ◽  
JENS G. MATTSSON ◽  
...  

SUMMARYMost human cases of cryptosporidiosis are caused byCryptosporidium parvumorCryptosporidium hominis, but the use of molecular diagnostic methods has revealed that several other less common species or genotypes can also be involved. Here, we describe two unusual causes of cryptosporidiosis, one being the recently described speciesCryptosporidium viatorumand the otherCryptosporidiumchipmunk genotype I. Two Swedish patients who were infected withC. viatorumhad travelled to Kenya and Guatemala, respectively, and two others had been infected withCryptosporidiumchipmunk genotype I in Sweden. None of these four patients were immunocompromised, and all four showed classical symptoms of cryptosporidiosis. We performed extensive molecular characterization, including analysis of four loci. The twoC. viatorumisolates were found to differ slightly at the 70-kDa heat shock protein locus, which may indicate a local geographical variation in this species that has previously been described exclusively on the Indian subcontinent.


Author(s):  
Z. Banda ◽  
Rosely A.B. Nichols ◽  
A.M. Grimason ◽  
H.V. Smith

Of 1 346 faecal samples from the Chikwawa and Thyolo districts of Malawi, analysed for the presence of Cryptosporidium oocysts between October 2001 and May 2003, 61.3 % were from cattle (29.8 % of these were from calves < 6 months old). Cryptosporidium oocysts were detected during all three seasons studied in Chikwawa and Thyolo. In Chikwawa, 13.6 % of adult cattle and 11.7 % of calves were infected, compared to 28.9 % of adult cattle and 36.7 % of calves in Thyolo. Dependent on season, between 7.8 % and 37.7 % (Chikwawa) and 16.7 % and 39.3 % (Thyolo) of cattle samples contained oocysts. In Chikwawa, the highest percentage of infections occurred in the cool season, whereas in Thyolo, the highest percentage of infections occurred in the dry season. Faecal samples from goats [n = 225], pigs [n = 92], sheep [n = 6]), rabbits, guinea pigs, chickens, ducks, turkeys, doves and guinea fowls were also analysed. Up to 5.6 % of goat samples contained oocysts in Chikwawa, compared to between 16.7 % and 39.3 % in Thyolo. Again, in Chikwawa, the highest percentage of infections occurred in the cool season and the lowest in the rainy season, whereas, in Thyolo, the highest percentage of infections occurred in the dry season and the lowest in the cool season. In pigs, more infections were detected in the dry season in Chikwawa, but infections in the cool season were similar (17.7 %), whereas in Thyolo, infections occurred in all three seasons (17.9 % in the rainy season, 25 % in the cool season and 60 % in the dry season). Often diarrhoeic, oocyst positive cattle faecal samples collected from Chikwawa and subjected to PCR-RFLP, four oocyst positive samples (two from heifers, one from a cow and one unknown) were amplified at an 18S rRNA and Cryptosporidium oocyst wall protein (COWP) loci. RFLP of the 18S rRNA locus indicated that Cryptosporidium parvum, Cryptosporidium hominis, Cryptosporidium bovis and / or Cryptosporidium ryanae DNA, or a mixture of them was present. Cryptosporidium parvum DNA was identified in one sample that amplified at the COWP locus, indicating the presence of the major zoonotic Cryptosporidium species in Malawi.


2002 ◽  
Vol 68 (4) ◽  
pp. 1817-1826 ◽  
Author(s):  
Timothy M. Straub ◽  
Don S. Daly ◽  
Sharon Wunshel ◽  
Paul A. Rochelle ◽  
Ricardo DeLeon ◽  
...  

ABSTRACT We investigated the application of an oligonucleotide microarray to (i) specifically detect Cryptosporidium spp., (ii) differentiate between closely related C. parvum isolates and Cryptosporidium species, and (iii) differentiate between principle genotypes known to infect humans. A microarray of 68 capture probes targeting seven single-nucleotide polymorphisms (SNPs) within a 190-bp region of the hsp70 gene of Cryptosporidium parvum was constructed. Labeled hsp70 targets were generated by PCR with biotin- or Cy3-labeled primers. Hybridization conditions were optimized for hybridization time, temperature, and salt concentration. Two genotype I C. parvum isolates (TU502 and UG502), two C. parvum genotype II isolates (Iowa and GCH1), and DNAs from 22 non-Cryptosporidium sp. organisms were used to test method specificity. Only DNAs from C. parvum isolates produced labeled amplicons that could be hybridized to and detected on the array. Hybridization patterns between genotypes were visually distinct, but identification of SNPs required statistical analysis of the signal intensity data. The results indicated that correct mismatch discrimination could be achieved for all seven SNPs for the UG502 isolate, five of seven SNPs for the TU502 isolate, and six of seven SNPs for both the Iowa and GCH1 isolates. Even without perfect mismatch discrimination, the microarray method unambiguously distinguished between genotype I and genotype II isolates and demonstrated the potential to differentiate between other isolates and species on a single microarray. This method may provide a powerful new tool for water utilities and public health officials for assessing point and nonpoint source contamination of water supplies.


2004 ◽  
Vol 32 (1) ◽  
pp. 5-14 ◽  
Author(s):  
ZHILIANG WU ◽  
ISAO NAGANO ◽  
THIDARUT BOONMARS ◽  
YUZO TAKAHASHI

2004 ◽  
Vol 72 (10) ◽  
pp. 6125-6131 ◽  
Author(s):  
Amna Hashim ◽  
Marguerite Clyne ◽  
Grace Mulcahy ◽  
Donna Akiyoshi ◽  
Rachel Chalmers ◽  
...  

ABSTRACT It has been recognized recently that human cryptosporidiosis is usually caused by Cryptosporidium parvum genotype I (“human” C. parvum), which is not found in animals. Compared to C. parvum genotype II, little is known of the biology of invasion of the human-restricted C. parvum genotype I. The aims of the present study were (i) to explore and compare with genotype II the pathogenesis of C. parvum genotype I infection by using an established in vitro model of infection and (ii) to examine the possibility that host-specific cell tropism determines species restriction among C. parvum genotypes by using a novel ex vivo small intestinal primary cell model of infection. Oocysts of C. parvum genotypes I and II were used to infect HCT-8 cells and primary intestinal epithelial cells in vitro. Primary cells were harvested from human endoscopic small-bowel biopsies and from bovine duodenum postmortem. C. parvum genotype I infected HCT-8 cells with lower efficiency than C. parvum genotype II. Actin colocalization at the host parasite interface and reduction in levels of invasion after treatment with microfilament inhibitors (cytochalasin B and cytochalasin D) were observed for both genotypes. C. parvum genotype II invaded primary intestinal epithelial cells, regardless of the species of origin. In contrast, C. parvum genotype I invaded only human small-bowel cells. The pathogenesis of C. parvum genotype I differs from C. parvum genotype II. C parvum genotype I does not enter primary bovine intestinal cells, suggesting that the species restriction of this genotype is due to host tissue tropism of the infecting isolate.


2003 ◽  
Vol 69 (8) ◽  
pp. 4720-4726 ◽  
Author(s):  
Zhiliang Wu ◽  
Isao Nagano ◽  
Thidarut Boonmars ◽  
Takumi Nakada ◽  
Yuzo Takahashi

ABSTRACT A glycoprotein (Cpgp40/15)-encoding gene of Cryptosporidium parvum was analyzed to reveal intraspecies polymorphism within C. parvum isolates. Forty-one isolates were collected from different geographical origins (Japan, Italy, and Nepal) and hosts (humans, calves, and a goat). These isolates were characterized by means of DNA sequencing, PCR-restriction fragment length polymorphism (PCR-RFLP), and RFLP-single-strand conformational polymorphism (RFLP-SSCP) analyses of the gene for Cpgp40/15. The sequence analysis indicated that there was DNA polymorphism between genotype I and II, as well as within genotype I, isolates. The DNA and amino acid sequence identities between genotypes I and II differed, depending on the isolates, ranging from 73.3 to 82.9% and 62.4 to 80.1%, respectively. Those among genotype I isolates differed, depending on the isolates, ranging from 69.0 to 85.4% and 54.8 to 79.2%, respectively. Because of the high resolution generated by PCR-RFLP and RFLP-SSCP, the isolates of genotype I could be subtyped as genotypes Ia1, Ia2, Ib, and Ie. The isolates of genotype II could be subtyped as genotypes IIa, IIb, and IIc. The isolates from calves, a goat, and one Japanese human were identified as genotype II. Within genotype II, the isolates from Japan were identified as genotype IIa, those from calves in Italy were identified as genotype IIb, and the goat isolate was identified as genotype IIc. All of the genotype I isolates were from humans. The Japanese isolate (code no. HJ3) and all of the Nepalese isolates were identified as genotypes Ia1 and Ia2, respectively. The Italian isolates were identified as genotype Ib, and the Japanese isolate (code no. HJ2) was identified as genotype Ie. Thus, the PCR-RFLP-SSCP analysis of this glycoprotein Cpgp40/15 gene generated a high resolution that has not been achieved by previous methods of genotypic differentiation of C. parvum.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 523
Author(s):  
Marianne Lebbad ◽  
Jadwiga Winiecka-Krusnell ◽  
Christen Rune Stensvold ◽  
Jessica Beser

The intestinal protozoan parasite Cryptosporidium is an important cause of diarrheal disease worldwide. The aim of this study was to expand the knowledge on the molecular epidemiology of human cryptosporidiosis in Sweden to better understand transmission patterns and potential zoonotic sources. Cryptosporidium-positive fecal samples were collected between January 2013 and December 2014 from 12 regional clinical microbiology laboratories in Sweden. Species and subtype determination was achieved using small subunit ribosomal RNA and 60 kDa glycoprotein gene analysis. Samples were available for 398 patients, of whom 250 (63%) and 138 (35%) had acquired the infection in Sweden and abroad, respectively. Species identification was successful for 95% (379/398) of the samples, revealing 12 species/genotypes: Cryptosporidium parvum (n = 299), C. hominis (n = 49), C. meleagridis (n = 8), C. cuniculus (n = 5), Cryptosporidium chipmunk genotype I (n = 5), C. felis (n = 4), C. erinacei (n = 2), C. ubiquitum (n = 2), and one each of C. suis, C. viatorum, C. ditrichi, and Cryptosporidium horse genotype. One patient was co-infected with C. parvum and C. hominis. Subtyping was successful for all species/genotypes, except for C. ditrichi, and revealed large diversity, with 29 subtype families (including 4 novel ones: C. parvum IIr, IIs, IIt, and Cryptosporidium horse genotype VIc) and 81 different subtypes. The most common subtype families were IIa (n = 164) and IId (n = 118) for C. parvum and Ib (n = 26) and Ia (n = 12) for C. hominis. Infections caused by the zoonotic C. parvum subtype families IIa and IId dominated both in patients infected in Sweden and abroad, while most C. hominis cases were travel-related. Infections caused by non-hominis and non-parvum species were quite common (8%) and equally represented in cases infected in Sweden and abroad.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1474
Author(s):  
Elisabeth Lopez ◽  
Juanita van Heerden ◽  
Laia Bosch-Camós ◽  
Francesc Accensi ◽  
Maria Jesus Navas ◽  
...  

African swine fever (ASF) has become the major threat for the global swine industry. Furthermore, the epidemiological situation of African swine fever virus (ASFV) in some endemic regions of Sub-Saharan Africa is worse than ever, with multiple virus strains and genotypes currently circulating in a given area. Despite the recent advances on ASF vaccine development, there are no commercial vaccines yet, and most of the promising vaccine prototypes available today have been specifically designed to fight the genotype II strains currently circulating in Europe, Asia, and Oceania. Previous results from our laboratory have demonstrated the ability of BA71∆CD2, a recombinant LAV lacking CD2v, to confer protection against homologous (BA71) and heterologous genotype I (E75) and genotype II (Georgia2007/01) ASFV strains, both belonging to same clade (clade C). Here, we extend these results using BA71∆CD2 as a tool trying to understand ASFV cross-protection, using phylogenetically distant ASFV strains. We first observed that five out of six (83.3%) of the pigs immunized once with 106 PFU of BA71∆CD2 survived the tick-bite challenge using Ornithodoros sp. soft ticks naturally infected with RSA/11/2017 strain (genotype XIX, clade D). Second, only two out of six (33.3%) survived the challenge with Ken06.Bus (genotype IX, clade A), which is phylogenetically more distant to BA71∆CD2 than the RSA/11/2017 strain. On the other hand, homologous prime-boosting with BA71∆CD2 only improved the survival rate to 50% after Ken06.Bus challenge, all suffering mild ASF-compatible clinical signs, while 100% of the pigs immunized with BA71∆CD2 and boosted with the parental BA71 virulent strain survived the lethal challenge with Ken06.Bus, without almost no clinical signs of the disease. Our results confirm that cross-protection is a multifactorial phenomenon that not only depends on sequence similarity. We believe that understanding this complex phenomenon will be useful for designing future vaccines for ASF-endemic areas.


2013 ◽  
Vol 76 (1) ◽  
pp. 93-98 ◽  
Author(s):  
FRANCISKA M. SCHETS ◽  
HAROLD H. J. L. van den BERG ◽  
ANA MARIA de RODA HUSMAN

The intestinal parasites Cryptosporidium and Giardia are transmitted by water and food and cause human gastroenteritis. Filter-feeding bivalve mollusks, such as oysters and mussels, filter large volumes of water and thus concentrate such pathogens, which makes these bivalves potential vectors of disease. To assess the risk of infection from consumption of contaminated bivalves, parasite numbers and parasite recovery data are required. A modified immunomagnetic separation (IMS) procedure was used to determine Cryptosporidium oocyst and Giardia cyst numbers in individually homogenized oysters (Crassostrea gigas) and mussels (Mytilus edulis). About 12% of the commercial bivalves were positive, with low (oo)cyst numbers per specimen. The recovery efficiency of the IMS procedure was systematically evaluated. Experiments included seeding of homogenized bivalves and whole animals with 100 to 1,000 (oo)cysts. Both seeding procedures yielded highly variable recovery rates. Median Cryptosporidium recoveries were 7.9 to 21% in oysters and 62% in mussels. Median Giardia recoveries were 10 to 25% in oysters and 110% in mussels. Giardia recovery was significantly higher than Cryptosporidium recovery. (Oo)cysts were less efficiently recovered from seeded whole animals than from seeded homogenates, with median Cryptosporidium recoveries of 5.3% in oysters and 45% in mussels and median Giardia recoveries of 4.0% in oysters and 82% in mussels. Both bivalve homogenate seeding and whole animal seeding yielded higher (oo)cyst recovery in mussels than in oysters, likely because of the presence of less shellfish tissue in IMS when analyzing the smaller mussels compared with the larger oysters, resulting in more efficient (oo)cyst extraction. The data generated in this study may be used in the quantitative assessment of the risk of infection with Cryptosporidium or Giardia associated with the consumption of raw bivalve mollusks. This information may be used for making risk management decisions.


Sign in / Sign up

Export Citation Format

Share Document