scholarly journals High-Temperature Fluorescent In Situ Hybridization for Detecting Escherichia coli in Seawater Samples, Using rRNA-Targeted Oligonucleotide Probes and Flow Cytometry

2005 ◽  
Vol 71 (12) ◽  
pp. 8157-8164 ◽  
Author(s):  
Ying Zhong Tang ◽  
Karina Yew Hoong Gin ◽  
Tok Hoon Lim

ABSTRACT Fluorescence in situ hybridization (FISH) is a widely used method to detect environmental microorganisms. The standard protocol is typically conducted at a temperature of 46°C and a hybridization time of 2 or 3 h, using the fluorescence signal intensity as the sole parameter to evaluate the performance of FISH. This paper reports our results for optimizing the conditions of FISH using rRNA-targeted oligonucleotide probes and flow cytometry and the application of these protocols to the detection of Escherichia coli in seawater spiked with E.coli culture. We obtained two types of optimized protocols for FISH, which showed rapid results with a hybridization time of less than 30 min, with performance equivalent to or better than the standard protocol in terms of the fluorescence signal intensity and the FISH hybridization efficiency (i.e., the percentage of hybridized cells giving satisfactory fluorescence intensity): (i) one-step FISH (hybridization is conducted at 60 to 75°C for 30 min) and (ii) two-step FISH (pretreatment in a 90°C water bath for 5 min and a hybridizing step at 50 to 55°C for 15 to 20 min). We also found that satisfactory fluorescence signal intensity does not necessarily guarantee satisfactory hybridization efficiency and the tightness of the targeted population when analyzed with a flow cytometer. We subsequently successfully applied the optimized protocols to E. coli-spiked seawater samples, i.e., obtained flow cytometric signatures where the E. coli population was well separated from other particles carrying fluorescence from nonspecific binding to probes or from autofluorescence, and had a good recovery rate of the spiked E. coli cells (90%).

2000 ◽  
Vol 66 (8) ◽  
pp. 3603-3607 ◽  
Author(s):  
Bernhard M. Fuchs ◽  
Frank Oliver Glöckner ◽  
Jörg Wulf ◽  
Rudolf Amann

ABSTRACT Target site inaccessibility represents a significant problem for fluorescence in situ hybridization (FISH) of 16S rRNA with oligonucleotide probes. Here, unlabeled oligonucleotides (helpers) that bind adjacent to the probe target site were evaluated for their potential to increase weak probe hybridization signals inEscherichia coli DSM 30083T. The use of helpers enhanced the fluorescence signal of all six probes examined at least fourfold. In one case, the signal of probe Eco474 was increased 25-fold with the use of a single helper probe, H440-2. In another case, four unlabeled helpers raised the FISH signal of a formerly weak probe, Eco585, to the level of the brightest monolabeled oligonucleotide probes available for E. coli. The temperature of dissociation and the mismatch discrimination of probes were not significantly influenced by the addition of helpers. Therefore, using helpers should not cause labeling of additional nontarget organisms at a defined stringency of hybridization. However, the helper action is based on sequence-specific binding, and there is thus a potential for narrowing the target group which must be considered when designing helpers. We conclude that helpers can open inaccessible rRNA regions for FISH with oligonucleotide probes and will thereby further improve the applicability of this technique for in situ identification of microorganisms.


2012 ◽  
Vol 75 (9) ◽  
pp. 1691-1697 ◽  
Author(s):  
BURTON W. BLAIS ◽  
MARTINE GAUTHIER ◽  
MYLÈNE DESCHÊNES ◽  
GEORGE HUSZCZYNSKI

A cloth-based hybridization array system (CHAS) was developed for the identification of foodborne colony isolates of seven priority enterohemorrhagic Escherichia coli (EHEC-7) serogroups targeted by U.S. food inspection programs. Gene sequences associated with intimin; Shiga-like toxins 1 and 2; and the antigenic markers O26, O45, O103, O111, O121, O145, and O157 were amplified in a multiplex PCR incorporating a digoxigenin label, and detected by hybridization of the PCR products with an array of specific oligonucleotide probes immobilized on a polyester cloth support, with subsequent immunoenzymatic assay of the captured amplicons. The EHEC-7 CHAS exhibited 100% inclusivity and 100% exclusivity characteristics with respect to detection of the various markers among 89 different E. coli strains, with various marker gene profiles and 15 different strains of non–E. coli bacteria.


2004 ◽  
Vol 186 (20) ◽  
pp. 6845-6854 ◽  
Author(s):  
Koichi Mori ◽  
Reiko Bando ◽  
Naoki Hieda ◽  
Tetsuo Toraya

ABSTRACT The holoenzyme of adenosylcobalamin-dependent ethanolamine ammonia lyase undergoes suicidal inactivation during catalysis as well as inactivation in the absence of substrate. The inactivation involves the irreversible cleavage of the Co-C bond of the coenzyme. We found that the inactivated holoenzyme undergoes rapid and continuous reactivation in the presence of ATP, Mg2+, and free adenosylcobalamin in permeabilized cells (in situ), homogenate, and cell extracts of Escherichia coli. The reactivation was observed in the permeabilized E. coli cells carrying a plasmid containing the E. coli eut operon as well. From coexpression experiments, it was demonstrated that the eutA gene, adjacent to the 5′ end of ethanolamine ammonia lyase genes (eutBC), is essential for reactivation. It encodes a polypeptide consisting of 467 amino acid residues with predicted molecular weight of 49,599. No evidence was obtained that shows the presence of the auxiliary protein(s) potentiating the reactivation or associating with EutA. It was demonstrated with purified recombinant EutA that both the suicidally inactivated and O2-inactivated holoethanolamine ammonia lyase underwent rapid reactivation in vitro by EutA in the presence of adenosylcobalamin, ATP, and Mg2+. The inactive enzyme-cyanocobalamin complex was also activated in situ and in vitro by EutA under the same conditions. Thus, it was concluded that EutA is the only component of the reactivating factor for ethanolamine ammonia lyase and that reactivation and activation occur through the exchange of modified coenzyme for free intact adenosylcobalamin.


2004 ◽  
Vol 70 (7) ◽  
pp. 4276-4285 ◽  
Author(s):  
Richard L. Whitman ◽  
Meredith B. Nevers ◽  
Ginger C. Korinek ◽  
Muruleedhara N. Byappanahalli

ABSTRACT Studies on solar inactivation of Escherichia coli in freshwater and in situ have been limited. At 63rd St. Beach, Chicago, Ill., factors influencing the daily periodicity of culturable E. coli, particularly insolation, were examined. Water samples for E. coli analysis were collected twice daily between April and September 2000 three times a week along five transects in two depths of water. Hydrometeorological conditions were continuously logged: UV radiation, total insolation, wind speed and direction, wave height, and relative lake level. On 10 days, transects were sampled hourly from 0700 to 1500 h. The effect of sunlight on E. coli inactivation was evaluated with dark and transparent in situ mesocosms and ambient lake water. For the study, the number of E. coli samples collected (n) was 2,676. During sunny days, E. coli counts decreased exponentially with day length and exposure to insolation, but on cloudy days, E. coli inactivation was diminished; the E. coli decay rate was strongly influenced by initial concentration. In situ experiments confirmed that insolation primarily inactivated E. coli; UV radiation only marginally affected E. coli concentration. The relationship between insolation and E. coli density is complicated by relative lake level, wave height, and turbidity, all of which are often products of wind vector. Continuous importation and nighttime replenishment of E. coli were evident. These findings (i) suggest that solar inactivation is an important mechanism for natural reduction of indicator bacteria in large freshwater bodies and (ii) have implications for management strategies of nontidal waters and the use of E. coli as an indicator organism.


1988 ◽  
Vol 34 (2) ◽  
pp. 190-193 ◽  
Author(s):  
James J. Germida ◽  
George G. Khachatourians

Bacteriophage P1-mediated generalized transduction of Escherichia coli K-12 was assessed in nonsterile soil. Auxotrophic recipient cells (thr−leu−thi−rpsL) were incubated in a sandy and a silty clay loam soil, and the transducing phage lysates from prototrophic strains carrying transposon 10 (Tn10) in either purE or aroL regions were added. At intervals, the bacterial populations derived from the soils were plated on selective-differential media to enumerate prototrophic (thr+, leu+, or Tcr) transductants. Of 100 bacterial isolates obtained on the selective-differential media, 58 (14 thr+; 11, leu+; 33 Tcr) were confirmed E. coli transductants. The frequency of transduction in soil was ca. 10−6. These data demonstrate the potential use of bacteriophage P1 to genetically manipulate E. coli in situ.


2020 ◽  
Author(s):  
Ran You ◽  
Lei Wang ◽  
Congrong Shi ◽  
Hao Chen ◽  
Shasha Zhang ◽  
...  

Abstract Background: The biosynthesis of high value-added compounds using metabolically engineered strains has received wide attention in recent years. Myo-inositol (inositol), an important compound in the pharmaceutics, cosmetics and food industries, is usually produced from phytate via a harsh set of chemical reactions. Recombinant Escherichia coli strains have been constructed by metabolic engineering strategies to produce inositol, but with a low yield. The proper distribution of carbon flux between cell growth and inositol production is a major challenge for constructing an efficient inositol-synthesis pathway in bacteria. Construction of metabolically engineered E. coli strains with high stoichiometric yield of inositol is desirable.Results: In the present study, we designed an inositol-synthesis pathway from glucose with a theoretical stoichiometric yield of 1 mol inositol/mol glucose. Recombinant E. coli strains with high stoichiometric yield (>0.7 mol inositol/mol glucose) were obtained. Inositol was successfully biosynthesized after introducing two crucial enzymes: inositol-3-phosphate synthase (IPS) from Trypanosoma brucei, and inositol monophosphatase (IMP) from E. coli. Based on starting strains E. coli BW25113 (wild-type) and SG104 (ΔptsG::glk, ΔgalR::zglf, ΔpoxB::acs), a series of engineered strains for inositol production was constructed by deleting the key genes pgi, pfkA and pykF. Plasmid-based expression systems for IPS and IMP were optimized, and expression of the gene zwf was regulated to enhance the stoichiometric yield of inositol. The highest stoichiometric yield (0.96 mol inositol/mol glucose) was achieved from recombinant strain R15 (SG104, Δpgi, Δpgm, and RBSL5-zwf). Strain R04 (SG104 and Δpgi) reached high-density in a 1-L fermenter when using glucose and glycerol as a mixed carbon source. In scaled-up fed-batch bioconversion in situ using strain R04, 0.82 mol inositol/mol glucose was produced within 23 h, corresponding to a titer of 106.3 g/L (590.5 mM) inositol.Conclusions: The biosynthesis of inositol from glucose in recombinant E. coli was optimized by metabolic engineering strategies. The metabolically engineered E. coli strains represent a promising method for future inositol production. This study provides an essential reference to obtain a suitable distribution of carbon flux between glycolysis and inositol synthesis.


Author(s):  
Moritz Senger ◽  
Konstanin Laun ◽  
Basem Soboh ◽  
Sven Timo Stripp

[NiFe]-hydrogenases are gas-processing metalloenzymes that catalyze the conversion of dihydrogen (H2) to protons and electrons in a broad range of microorganisms. Within the framework of green chemistry, the molecular proceedings of biological hydrogen turnover inspired the design of novel catalytic compounds for H2 generation. The bidirectional “O2-sensitive” [NiFe]-hydrogenase from Escherichia coli HYD-2 has recently been crystallized; however, a systematic infrared characterization in the presence of natural reactants is not available yet. In this study, we analyze HYD-2 from E. coli by in situ ATR FTIR spectroscopy under quantitative gas control. We provide an experimental assignment of all catalytically relevant redox intermediates alongside the O2- and CO-inhibited cofactor species. Furthermore, the reactivity and mutual competition between H2, O2, and CO was probed in real time, which lays the foundation for a comparison with other enzymes, e.g., “O2-tolerant” [NiFe]-hydrogenases. Surprisingly, only Ni-B was observed in the presence of O2 with no indications for the “unready” Ni-A state. The presented work proves the capabilities of in situ ATR FTIR spectroscopy as an efficient and powerful technique for the analysis of biological macromolecules and enzymatic small molecule catalysis.


1999 ◽  
Vol 65 (12) ◽  
pp. 5615-5618 ◽  
Author(s):  
Maite Muniesa ◽  
Francisco Lucena ◽  
Juan Jofre

ABSTRACT The behavior outside the gut of seeded Escherichia coliO157:H7, naturally occurring E. coli, somatic coliphages, bacteriophages infecting O157:H7, and Shiga toxin 2 (Stx2)-encoding bacteriophages was studied to determine whether the last persist in the environment more successfully than their host bacteria. The ratios between the numbers of E. coli and those of the different bacteriophages were clearly lower in river water than in sewage of the area, whereas the ratios between the numbers of the different phages were similar. In addition, the numbers of bacteria decreased between 2 and 3 log units in in situ survival experiments performed in river water, whereas the numbers of phages decreased between 1 and 2 log units. Chlorination and pasteurization treatments that reduced by approximately 4 log units the numbers of bacteria reduced by less than 1 log unit the numbers of bacteriophages. Thus, it can be concluded that Stx2-encoding phages persist longer than their host bacteria in the water environment and are more resistant than their host bacteria to chlorination and heat treatment.


Author(s):  
Samaila Abubakar ◽  
Musa Muktari ◽  
Rejoice Atiko

The synthesis and antimicrobial application of Co (III) and Fe (III) complexes of imine functionalized N-heterocyclic carbene (Imino-NHC) ligands is reported. The ligand precursors 1-(2-[(hydroxyl-benzylidene)-amino]-ethyl)-3-R-3H-imidazol-1-ium bromide where R = pyridyl (1a) and benzyl (1b) have been reported in our previous work. The in-situ generated ligands of 1a and 1b have been successfully coordinated to CoBr2 and [FeI(Cp)(CO)2] leading to the isolation of air-stable N^C^N^O four coordinate Co(III)  complex 2 and a six-coordinate Fe(III) complex 3. The synthesised complexes were both found to be NMR inactive hence were characterize using FTIR and LRMS. The complexes were screened for antimicrobial activities against four gram-negative bacteria Escherichia Coli (E-coli), Shigella, Klebsiella pneumoniae (K. Pneumoniae) and Salmonella typhi (S. typhi) and a gram positive bacteria Staphylocossus aureus (S. aureus). The antimicrobial test was conducted using disc diffusion methods and based on the concentrations of 100, 200, 300, 400 and 500 µg/ mL, significant activities were recorded for both cobalt and the iron complexes.


2010 ◽  
Vol 190 (4) ◽  
pp. 613-621 ◽  
Author(s):  
Julio O. Ortiz ◽  
Florian Brandt ◽  
Valério R.F. Matias ◽  
Lau Sennels ◽  
Juri Rappsilber ◽  
...  

Ribosomes arranged in pairs (100S) have been related with nutritional stress response and are believed to represent a “hibernation state.” Several proteins have been identified that are associated with 100S ribosomes but their spatial organization has hitherto not been characterized. We have used cryoelectron tomography to reveal the three-dimensional configuration of 100S ribosomes isolated from starved Escherichia coli cells and we have described their mode of interaction. In situ studies with intact E. coli cells allowed us to demonstrate that 100S ribosomes do exist in vivo and represent an easily reversible state of quiescence; they readily vanish when the growth medium is replenished.


Sign in / Sign up

Export Citation Format

Share Document