scholarly journals Bactericidal Effect of Hydrogen Peroxide on Spacecraft Isolates

1975 ◽  
Vol 30 (4) ◽  
pp. 710-711 ◽  
Author(s):  
M. D. Wardle ◽  
G. M. Renninger
1982 ◽  
Vol 152 (1) ◽  
pp. 81-88
Author(s):  
E H Berglin ◽  
M B Edlund ◽  
G K Nyberg ◽  
J Carlsson

Under anaerobic conditions an exponentially growing culture of Escherichia coli K-12 was exposed to hydrogen peroxide in the presence of various compounds. Hydrogen peroxide (0.1 mM) together with 0.1 mM L-cysteine or L-cystine killed the organisms more rapidly than 10 mM hydrogen peroxide alone. The exposure of E. coli to hydrogen peroxide in the presence of L-cysteine inhibited some of the catalase. This inhibition, however, could not fully explain the 100-fold increase in hydrogen peroxide sensitivity of the organism in the presence of L-cysteine. Of other compounds tested only some thiols potentiated the bactericidal effect of hydrogen peroxide. These thiols were effective, however, only at concentrations significantly higher than 0.1 mM. The effect of L-cysteine and L-cystine could be annihilated by the metal ion chelating agent 2,2'-bipyridyl. DNA breakage in E. coli K-12 was demonstrated under conditions where the organisms were killed by hydrogen peroxide.


Author(s):  
Bing Han ◽  
Xiaoyu Han ◽  
Mengmeng Ren ◽  
Yilin You ◽  
Jicheng Zhan ◽  
...  

Diseases caused by harmful microorganisms pose a serious threat to human health. Safe and environment-friendly disinfectants are, therefore, essential in preventing and controlling such pathogens. This study aimed to investigate the antimicrobial activity and mechanism of a novel hydrogen peroxide and silver (H 2 O 2 -Ag + ) complex (HSC) in combatting Staphylococcus aureus ATCC 29213, Escherichia coli O157:H7 NCTC 12900 and Salmonella typhimurium SL 1344. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against S. aureus were found to be 0.014 % H 2 O 2 -3.125 mg/L Ag + , while 0.028 % H 2 O 2 -6.25 mg/L Ag + for both E. coli and S. typhimurium . Results of the growth curve assay and time-kill trial suggest that the HSC could inhibit the growth of the tested bacteria, as 99.9 % of viable cells were killed following treatment at the 1 MIC for 3 h. Compared with Oxytech D10 disinfectant (0.25 % H 2 O 2 -5 mg/L Ag + ), the HSC exhibited better antibacterial efficacy at a lower concentration (0.045 % H 2 O 2 -10 mg/L Ag + ). The mechanism of antibacterial action of HSC was found including the disruption of the bacterial cell membrane, followed by entry into the bacteria cell to reduce intracellular adenosine triphosphate (ATP) concentration, and inhibit the activity of antioxidases, superoxide dismutase (SOD) and catalase (CAT). The enhanced bactericidal effect of hydrogen peroxide combined with silver indicates a potential for its application in environmental disinfection, particularly in the food industry.


1980 ◽  
Vol 29 (3) ◽  
pp. 1190-1192
Author(s):  
J Carlsson

Streptococcus sanguis and Peptostreptococcus anaerobius were exposed to various combinations of the components of the lactoperoxidase-thiocyanate-hydrogen peroxide system. The bactericidal effect of hydrogen peroxide was prevented under anaerobic conditions by lactoperoxidase together with thiocyanate, but not by lactoperoxidase or thiocyanate alone. Thiocyanate was effective already at a molar ratio to hydrogen peroxide of 1:100.


2017 ◽  
Vol 103 ◽  
pp. 65-70 ◽  
Author(s):  
Haruna Ibi ◽  
Makoto Hayashi ◽  
Fumihiko Yoshino ◽  
Muneaki Tamura ◽  
Ayaka Yoshida ◽  
...  

2000 ◽  
Vol 42 (1-2) ◽  
pp. 293-298 ◽  
Author(s):  
R. Pedahzur ◽  
D. Katzenelson ◽  
N. Barnea ◽  
O. Lev ◽  
H.I. Shuval ◽  
...  

The aim of the present work was to evaluate the disinfectant capacity and the possible fields of application of a combined silver and hydrogen peroxide (HP) water disinfectant. The findings demonstrated the high bactericidal action of silver (on E. coli) and its relatively ineffective virucidal effect (on MS-2 phage). HP was found to have a small bactericidal effect and a mild virucidal one. When combined, silver and HP usually exhibited a synergistic action on the viability of E. coli and on the luminescence of recombinant luminescent E. coli. In some instances, the combined bactericidal effects were 1000-fold higher than the sum of the separate ones. No increased virucidal action was observed. The biocidal action of the combination generally increased with increasing temperature and pH, and decreased in secondary and tertiary effluents. The physiological effects and mechanisms of toxicity of HP, silver and their combinations, were assessed by monitoring the induction of stress promoters upon exposure to the active agents, and by assessing the sensitivity of E. coli mutated in major stress responses to HP, silver and their combinations. The results showed that HP induced a wide array of stress responses, that both silver and HP induced promoters regulated by the heat shock response, and that the dnaK promoter (regulated by the heat shock response) was synergistically induced. The mutant sensitivity tests showed that bacteria deficient in the ability to activate central cellular stress responses (SOS, heat shock, stationary phase, oxidative) were hypersensitive to both HP and silver. These results imply that cellular proteins, and possibly the DNA, are the cellular moieties chiefly affected. The above findings suggest that the potentiated effect of HP and silver is a metabolically dependant/related process that stems from a combination and/or accumulation of physiological effects exerted by the active ingredients. The physico-chemical properties of the combined disinfectant, and its disinfection capacity, points to its potential application as a long-term secondary residual disinfectant for water of relatively high quality.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 147
Author(s):  
Akane Saikachi ◽  
Kotone Sugasawara ◽  
Tomonori Suzuki

We conducted photocatalytic experiments focusing on the peptidoglycan layer to elucidate the details of the mechanism of photocatalytic sterilization. The previous study of our laboratory suggested that the presence of the peptidoglycan layer increases the bactericidal effect. To further verify it, the following experiments were performed: experiments on cells with different peptidoglycan layer thickness used Lactobacillus plantarum cells with different growth phases, experiments on cells with the thin peptidoglycan layer used Escherichia coli cells and spheroplast cells from which the peptidoglycan layer was removed from E. coli cells. The bactericidal effects increased as the growth progresses of L. plantarum. It was confirmed by TEM that the thickness of the peptidoglycan layer increased with cell growth. The survival rates of E. coli intact cells were significantly lower than those of spheroplast cells. These results strongly suggest that the peptidoglycan layer enhances the photocatalytic bactericidal effect. As a result of allowing the photocatalytic reaction to act on peptidoglycan, the amount of hydroxyl radical was smaller, and the amount of hydrogen peroxide was higher than in the absence of peptidoglycan. It is suggested that peptidoglycan may convert produced hydroxyl radical to hydrogen peroxide.


2019 ◽  
Vol 11 (18) ◽  
pp. 2427-2445 ◽  
Author(s):  
Michael R Hamblin ◽  
Heidi Abrahamse

Tetracyclines are well established antibiotics but show phototoxicity as a side effect. Antimicrobial photodynamic inactivation uses nontoxic dyes combined with harmless light to destroy microbial cells by reactive oxygen species. Tetracyclines (demeclocycline and doxycycline) can act as light-activated antibiotics by binding to bacterial cells and killing them only upon illumination. The remaining tetracyclines can prevent bacterial regrowth after illumination has ceased. Antimicrobial photodynamic inactivation can be potentiated by potassium iodide. Azide quenched the formation of iodine, but not hydrogen peroxide. Demeclotetracycline (but not doxycycline) iodinated tyrosine after light activation in the presence of potassium iodide. Bacteria are killed by photoactivation of tetracyclines in the absence of oxygen. Since topical tetracyclines are already used clinically, blue light activation may increase the bactericidal effect.


2016 ◽  
Vol 12 (5) ◽  
pp. 3073-3077 ◽  
Author(s):  
Xin-Cai Zhou ◽  
Yu-Lan Li ◽  
De-Xi Liu ◽  
Ying-Guang Cao ◽  
Xin-Pei Lu

Sign in / Sign up

Export Citation Format

Share Document