scholarly journals Neutralizing Activity of Vaccine-Induced Antibodies to Two Bacillus anthracis Toxin Components, Lethal Factor and Edema Factor

2007 ◽  
Vol 15 (1) ◽  
pp. 71-75 ◽  
Author(s):  
Sarah C. Taft ◽  
Alison A. Weiss

ABSTRACT Anthrax vaccine adsorbed (AVA; BioThrax), the current FDA-licensed human anthrax vaccine, contains various amounts of the three anthrax toxin components, protective antigen (PA), lethal factor (LF), and edema factor (EF). While antibody to PA is sufficient to mediate protection against anthrax in animal models, it is not known if antibodies to LF or EF contribute to protection in humans. Toxin-neutralizing activity was evaluated in sera from AVA-vaccinated volunteers, all of whom had antibody responses to LF and EF, as well as PA. The contribution of antibodies to LF and EF was assessed using mouse macrophage J774A.1 cells by examining neutralization of LF-induced lysis using alamarBlue reduction and neutralization of EF-induced cyclic AMP increases by enzyme-linked immunosorbent assay. Antibody responses to LF and EF were low compared to those to PA, and the amount of LF or EF in the assay could exceed the amount of antibodies to LF or EF. Higher titers were seen for most individuals when the LF or EF concentration was limiting compared to when LF or EF was in excess, initially suggesting that antibody to LF or EF augmented protection. However, depletion of LF and EF antibodies in sera did not result in a significant decrease in toxin neutralization. Overall, this study suggests that AVA-induced LF and EF antibodies do not significantly contribute to anthrax toxin neutralization in humans and that antibodies to PA are sufficient to neutralize toxin activity.

2012 ◽  
Vol 80 (8) ◽  
pp. 2623-2631 ◽  
Author(s):  
Haim Levy ◽  
Shay Weiss ◽  
Zeev Altboum ◽  
Josef Schlomovitz ◽  
Itai Glinert ◽  
...  

ABSTRACTThe virulence ofBacillus anthracis, the causative agent of anthrax, stems from its antiphagocytic capsule, encoded by pXO2, and the tripartite toxins encoded by pXO1. The accepted paradigm states that anthrax is both an invasive and toxinogenic disease and that the toxins play major roles in pathogenicity. We tested this assumption by a systematic study of mutants with combined deletions of thepag,lef, andcyagenes, encoding protective antigen (PA), lethal factor (LF), and edema factor (EF), respectively. The resulting seven mutants (single, double, and triple) were evaluated following subcutaneous (s.c.) and intranasal (i.n.) inoculation in rabbits and guinea pigs. In the rabbit model, virulence is completely dependent on the presence of PA. Any mutant bearing apagdeletion behaved like a pXO1-cured mutant, exhibiting complete loss of virulence with attenuation indices of over 2,500,000 or 1,250 in the s.c. or i.n. route of infection, respectively. In marked contrast, in guinea pigs, deletion ofpagor even of all three toxin components resulted in relatively moderate attenuation, whereas the pXO1-cured bacteria showed complete attenuation. The results indicate that a pXO1-encoded factor(s), other than the toxins, has a major contribution to the virulence mechanism ofB. anthracisin the guinea pig model. These unexpected toxin-dependent and toxin-independent manifestations of pathogenicity in different animal models emphasize the importance and need for a comprehensive evaluation ofB. anthracisvirulence in general and in particular for the design of relevant next-generation anthrax vaccines.


2002 ◽  
Vol 45 (1) ◽  
pp. 3-5 ◽  
Author(s):  
Jiří Patočka ◽  
Miroslav Špliňo

The anthrax toxin comprises three proteins. When they work together, they can kill humans, especially after spores of the bacteria have been inhaled. One anthrax protein, called protective antigen (PA), chaperones the two other toxins into human or animal cells and shields them from the body’s immune system. The second, lethal factor (LF), destroys the white blood cells that hosts send in defence. The third toxin molecule, edema factor (EF), hijacks the signaling system in the body. This disrupts the energy balance of cells and leads to them accumulating fluid and complete destroy of cells.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Fabiana Freire Mendes de Oliveira ◽  
Sireesha Mamillapalli ◽  
Srinivas Gonti ◽  
Robert N. Brey ◽  
Han Li ◽  
...  

ABSTRACT Protective antigen (PA) is a component of anthrax toxin that can elicit toxin-neutralizing antibody responses. PA is also the major antigen in the current vaccine to prevent anthrax, but stability problems with recombinant proteins have complicated the development of new vaccines containing recombinant PA. The relationship between antigen physical stability and immunogenicity is poorly understood, but there are theoretical reasons to think that this parameter can affect immune responses. We investigated the immunogenicity of anthrax PA, in the presence and absence of the soluble von Willebrand factor A domain of the human form of receptor capillary morphogenesis protein 2 (sCMG2), to elicit antibodies to PA in BALB/c mice. Prior studies showed that sCMG2 stabilizes the 83-kDa PA structure to pH, chemical denaturants, temperature, and proteolysis and slows the hydrogen-deuterium exchange rate of histidine residues far from the binding interface. In contrast to a vaccine containing PA without adjuvant, we found that mice immunized with PA in stable complex with sCMG2 showed markedly reduced antibody responses to PA, including toxin-neutralizing antibodies and antibodies to domain 4, which correlated with fewer toxin-neutralizing antibodies. In contrast, mice immunized with PA in concert with a nonbinding mutant of sCMG2 (D50A) showed anti-PA antibody responses similar to those observed with PA alone. Our results suggest that addition of sCMG2 to a PA vaccine formulation is likely to result in a significantly diminished immune response, but we discuss the multitude of factors that could contribute to reduced immunogenicity. IMPORTANCE The anthrax toxin PA is the major immunogen in the current anthrax vaccine (anthrax vaccine adsorbed). Improving the anthrax vaccine for avoidance of a cold chain necessitates improvements in the thermodynamic stability of PA. We address how stabilizing PA using sCMG2 affects PA immunogenicity in BALB/c mice. Although the stability of PA is increased by binding to sCMG2, PA immunogenicity is decreased. This study emphasizes that, while binding of a ligand retains or improves conformational stability without affecting the native sequence, epitope recognition or processing may be affected, abrogating an effective immune response.


2004 ◽  
Vol 322 (1) ◽  
pp. 258-262 ◽  
Author(s):  
Ruth-Anne L. Pimental ◽  
Kenneth A. Christensen ◽  
Bryan A. Krantz ◽  
R. John Collier

2009 ◽  
Vol 16 (3) ◽  
pp. 408-413 ◽  
Author(s):  
Shixing Tang ◽  
Mahtab Moayeri ◽  
Zhaochun Chen ◽  
Harri Harma ◽  
Jiangqin Zhao ◽  
...  

ABSTRACT We developed a europium nanoparticle-based immunoassay (ENIA) for the sensitive detection of anthrax protective antigen (PA). The ENIA exhibited a linear dose-dependent pattern within the detection range of 0.01 to 100 ng/ml and was approximately 100-fold more sensitive than enzyme-linked immunosorbent assay (ELISA). False-positive results were not observed with serum samples from healthy adults, mouse plasma without PA, or plasma samples collected from mice injected with anthrax lethal factor or edema factor alone. For the detection of plasma samples spiked with PA, the detection sensitivities for ENIA and ELISA were 100% (11/11 samples) and 36.4% (4/11 samples), respectively. The assay exhibited a linear but qualitative correlation between the PA injected and the PA detected in murine blood (r = 0.97731; P < 0.0001). Anthrax PA was also detected in the circulation of mice infected with spores from a toxigenic Sterne-like strain of Bacillus anthracis, but only in the later stages of infection. These results indicate that the universal labeling technology based on europium nanoparticles and its application may provide a rapid and sensitive testing platform for clinical diagnosis and laboratory research.


2011 ◽  
Vol 137 (4) ◽  
pp. 343-356 ◽  
Author(s):  
Daniel Basilio ◽  
Laura D. Jennings-Antipov ◽  
Karen S. Jakes ◽  
Alan Finkelstein

Anthrax toxin consists of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). This last forms a heptameric channel, (PA63)7, in the host cell’s endosomal membrane, allowing the former two (which are enzymes) to be translocated into the cytosol. (PA63)7 incorporated into planar bilayer membranes forms a channel that translocates LF and EF, with the N terminus leading the way. The channel is mushroom-shaped with a cap containing the binding sites for EF and LF, and an ∼100 Å–long, 15 Å–wide stem. For proteins to pass through the stem they clearly must unfold, but is secondary structure preserved? To answer this question, we developed a method of trapping the polypeptide chain of a translocating protein within the channel and determined the minimum number of residues that could traverse it. We attached a biotin to the N terminus of LFN (the 263-residue N-terminal portion of LF) and a molecular stopper elsewhere. If the distance from the N terminus to the stopper was long enough to traverse the channel, streptavidin added to the trans side bound the N-terminal biotin, trapping the protein within the channel; if this distance was not long enough, streptavidin did not bind the N-terminal biotin and the protein was not trapped. The trapping rate was dependent on the driving force (voltage), the length of time it was applied, and the number of residues between the N terminus and the stopper. By varying the position of the stopper, we determined the minimum number of residues required to span the channel. We conclude that LFN adopts an extended-chain configuration as it translocates; i.e., the channel unfolds the secondary structure of the protein. We also show that the channel not only can translocate LFN in the normal direction but also can, at least partially, translocate LFN in the opposite direction.


2015 ◽  
Vol 146 (2) ◽  
pp. 183-192 ◽  
Author(s):  
Aviva Schiffmiller ◽  
Damon Anderson ◽  
Alan Finkelstein

Anthrax toxin consists of three ∼85-kD proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). PA63 (the 63-kD, C-terminal portion of PA) forms heptameric channels ((PA63)7) in planar phospholipid bilayer membranes that enable the translocation of LF and EF across the membrane. These mushroom-shaped channels consist of a globular cap domain and a 14-stranded β-barrel stem domain, with six anionic residues lining the interior of the stem to form rings of negative charges. (PA63)7 channels are highly cation selective, and, here, we investigate the effects on both cation selectivity and protein translocation of mutating each of these anionic residues to a serine. We find that although some of these mutations reduce cation selectivity, selectivity alone does not directly predict the rate of protein translocation; local changes in electrostatic forces must be considered as well.


2005 ◽  
Vol 73 (12) ◽  
pp. 8266-8274 ◽  
Author(s):  
Vijay Koya ◽  
Mahtab Moayeri ◽  
Stephen H. Leppla ◽  
Henry Daniell

ABSTRACT The currently available human vaccine for anthrax, derived from the culture supernatant of Bacillus anthracis, contains the protective antigen (PA) and traces of the lethal and edema factors, which may contribute to adverse side effects associated with this vaccine. Therefore, an effective expression system that can provide a clean, safe, and efficacious vaccine is required. In an effort to produce anthrax vaccine in large quantities and free of extraneous bacterial contaminants, PA was expressed in transgenic tobacco chloroplasts by inserting the pagA gene into the chloroplast genome. Chloroplast integration of the pagA gene was confirmed by PCR and Southern analysis. Mature leaves grown under continuous illumination contained PA as up to 14.2% of the total soluble protein. Cytotoxicity measurements in macrophage lysis assays showed that chloroplast-derived PA was equal in potency to PA produced in B. anthracis. Subcutaneous immunization of mice with partially purified chloroplast-derived or B. anthracis-derived PA with adjuvant yielded immunoglobulin G titers up to 1:320,000, and both groups of mice survived (100%) challenge with lethal doses of toxin. An average yield of about 150 mg of PA per plant should produce 360 million doses of a purified vaccine free of bacterial toxins edema factor and lethal factor from 1 acre of land. Such high expression levels without using fermenters and the immunoprotection offered by the chloroplast-derived PA should facilitate development of a cleaner and safer anthrax vaccine at a lower production cost. These results demonstrate the immunogenic and immunoprotective properties of plant-derived anthrax vaccine antigen.


2008 ◽  
Vol 15 (9) ◽  
pp. 1330-1336 ◽  
Author(s):  
Sarah C. Taft ◽  
Alison A. Weiss

ABSTRACT Anthrax toxin protective antigen (PA) binds to its cellular receptor, and seven subunits self-associate to form a heptameric ring that mediates the cytoplasmic entry of lethal factor or edema factor. The influence of receptor type on susceptibility to anthrax toxin components was examined using Chinese hamster ovary (CHO) cells expressing the human form of one of two PA receptors: TEM8 or CMG2. Unexpectedly, PA alone, previously believed to only mediate entry of lethal factor or edema factor, was found to be toxic to CHO-TEM8 cells; cells treated with PA alone displayed reduced cell growth and decreased metabolic activity. PA-treated cells swelled and became permeable to membrane-excluded dye, suggesting that PA formed cell surface pores on CHO-TEM8 cells. While CHO-CMG2 cells were not killed by wild-type PA, they were susceptible to the PA variant, F427A. Receptor expression also conferred differences in susceptibility to edema factor.


2009 ◽  
Vol 77 (4) ◽  
pp. 1649-1663 ◽  
Author(s):  
Justin Skoble ◽  
John W. Beaber ◽  
Yi Gao ◽  
Julie A. Lovchik ◽  
Laurie E. Sower ◽  
...  

ABSTRACTBacillus anthracisis the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizingB. anthracisthat is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting thespoIIEanduvrABgenes, renderingB. anthracisextremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into thelefandcyagenes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMAB. anthracisvaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMAB. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMAB. anthracisfully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMAB. anthraciswere partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.


Sign in / Sign up

Export Citation Format

Share Document