scholarly journals Evaluation of Antigen-Specific T-Cell Responses with a Miniaturized and Automated Method

2008 ◽  
Vol 15 (12) ◽  
pp. 1811-1818 ◽  
Author(s):  
Giuseppina Li Pira ◽  
Federico Ivaldi ◽  
Chiara Dentone ◽  
Elda Righi ◽  
Valerio Del Bono ◽  
...  

ABSTRACT The evaluation of antigen-specific T-cell responses is helpful for both research and clinical settings. Several techniques can enumerate antigen-responsive T cells or measure their products, but they require remarkable amounts of peripheral blood mononuclear cells (PBMCs). Since screening numerous antigens or testing samples from pediatric or lymphopenic patients is hampered in clinical practice, we refined a miniaturized, high-throughput assay for T-cell immunity. Antigens and cells in 10-μl volumes were dispensed into 1,536-well culture plates precoated with anti-gamma interferon (anti-IFN-γ) antibodies. After being cultured, the wells were developed by enzyme-linked immunosorbent assay for bound cytokine. Miniaturization and automation allowed quantitation of antigen-specific responses on 104 PBMCs. This method was applied for epitope mapping of mycobacterial antigens and was used in the clinic to evaluate T-cell immunity to relevant opportunistic pathogens by using small blood samples. A comparison with conventional methods showed similar sensitivity. Therefore, current flow cytometric methods that provide information on frequency and phenotype of specific T cells can be complemented by this assay that provides extensive information on cytokine concentrations and profiles and requires 20- to 50-fold fewer PBMCs than other analytical methods.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A574-A574
Author(s):  
Ellen Duong ◽  
Timothy Fessenden ◽  
Arjun Bhutkar ◽  
Stefani Spranger

BackgroundCytotoxic (CD8+) T-cells are required for tumor eradication and durable anti-tumor immunity.1 The induction of tumor-reactive CD8+ T-cells is predominately attributed to a subset of dendritic cells (DC) called Batf3-driven DC1, given their robust ability to cross-present antigens for T-cell priming and their role in effector T-cell recruitment.2–4 Presence of the DC1 signature in tumors correlates with improved survival and response to immunotherapies.5–7 Yet, most tumors with a DC1 infiltrate still progress, suggesting that while DC1 can initiate tumor-reactive CD8+ T-cell responses, they are unable to sustain them. Therefore, there is a critical need to identify and engage additional stimulatory DC subsets to strengthen anti-tumor immunity and boost immunotherapy responses.MethodsTo identify DC subsets that drive poly-functional CD8+ T-cell responses, we compared the DC infiltrate of a spontaneously regressing tumor with a progressing tumor. Multicolor flow immunophenotyping and single-cell RNA-sequencing were used to profile the DC compartment of both tumors. IFNγ-ELISpot was performed on splenocytes to assess for systemic tumor-reactive T-cell responses. Sorted DC subsets from tumors were co-cultured with TCR-transgenic T-cells ex vivo to evaluate their stimulatory capacity. Cross-dressing (in vivo/ex vivo) was assayed by staining for transfer of tumor-derived H-2b MHC complexes to Balb/c DC, which express the H-2d haplotype. Protective systemic immunity was assayed via contralateral flank tumor outgrowth experiments.ResultsRegressor tumors were infiltrated with more cross-presenting DC1 than progressor tumors. However, tumor-reactive CD8+ T-cell responses and tumor control were preserved in Batf3-/- mice lacking DC1, indicating that anti-tumor immune responses could be induced independent of DC1. Through functional assays, we established that anti-tumor immunity against regressor tumors required CD11c+ DC and cGAS/STING-independent type-I-interferon-sensing. Single-cell RNA-sequencing of the immune infiltrate of regressor tumors revealed a novel CD11b+ DC subset expressing an interferon-stimulated gene signature (ISG+ DC). Flow studies demonstrated that ISG+ DC were more enriched in regressor tumors than progressor tumors. We showed that ISG+ DC could activate CD8+ T-cells by cross-dressing with tumor-derived peptide-MHC complexes, thereby bypassing the requirement for cross-presentation to initiate CD8+ T-cell-driven immunity. ISG+ DC highly expressed cytosolic dsRNA sensors (RIG-I/MDA5) and could be therapeutically harnessed by exogenous addition of a dsRNA analog to drive protective CD8+ T-cell responses in DC1-deficient mice.ConclusionsThe DC infiltrate in tumors can dictate the strength of anti-tumor immunity. Harnessing multiple stimulatory DC subsets, such as cross-presenting DC1 and cross-dressing ISG+ DC, provides a therapeutic opportunity to enhance anti-tumor immunity and increase immunotherapy responses.ReferencesFridman WH, et al. The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer 2012;12(4): p. 298–306.Hildner K, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008;322(5904):p. 1097–100.Spranger S, et al. Tumor-Residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 2017;31(5):p. 711–723.e4.Roberts, EW, et al., Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 2016;30(2): p. 324–336.Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014;26(5): p. 638–52.Salmon H., et al., Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity, 2016. 44(4): p. 924–38.Sánchez-Paulete AR, et al., Cancer immunotherapy with immunomodulatory anti-CD137 and Anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov, 2016;6(1):p. 71–9.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sophie Steiner ◽  
Franziska Sotzny ◽  
Sandra Bauer ◽  
Il-Kang Na ◽  
Michael Schmueck-Henneresse ◽  
...  

The inability of patients with CVID to mount specific antibody responses to pathogens has raised concerns on the risk and severity of SARS-CoV-2 infection, but there might be a role for protective T cells in these patients. SARS-CoV-2 reactive T cells have been reported for SARS-CoV-2 unexposed healthy individuals. Until now, there is no data on T cell immunity to SARS-CoV-2 infection in CVID. This study aimed to evaluate reactive T cells to human endemic corona viruses (HCoV) and to study pre-existing SARS-CoV-2 reactive T cells in unexposed CVID patients. We evaluated SARS-CoV-2- and HCoV-229E and –OC43 reactive T cells in response to seven peptide pools, including spike and nucleocapsid (NCAP) proteins, in 11 unexposed CVID, 12 unexposed and 11 post COVID-19 healthy controls (HC). We further characterized reactive T cells by IFNγ, TNFα and IL-2 profiles. SARS-CoV-2 spike-reactive CD4+ T cells were detected in 7 of 11 unexposed CVID patients, albeit with fewer multifunctional (IFNγ/TNFα/IL-2) cells than unexposed HC. CVID patients had no SARS-CoV-2 NCAP reactive CD4+ T cells and less reactive CD8+ cells compared to unexposed HC. We observed a correlation between T cell reactivity against spike of SARS-CoV-2 and HCoVs in unexposed, but not post COVID-19 HC, suggesting cross-reactivity. T cell responses in post COVID-19 HC could be distinguished from unexposed HC by higher frequencies of triple-positive NCAP reactive CD4+ T cells. Taken together, SARS-CoV-2 reactive T cells are detectable in unexposed CVID patients albeit with lower recognition frequencies and polyfunctional potential. Frequencies of triple-functional reactive CD4+ cells might provide a marker to distinguish HCoV cross-reactive from SARS-CoV-2 specific T cell responses. Our data provides evidence, that anti-viral T cell immunity is not relevantly impaired in most CVID patients.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2545-2545
Author(s):  
Kyoichi Kaira ◽  
Ou Yamaguchi ◽  
Kenichi Yoshimura ◽  
Atsuto Mouri ◽  
Ayako Shiono ◽  
...  

2545 Background: Patients treated with programmed cell death 1 (PD-1)-blockade therapy fall into 3 distinct subgroups: non-responders presenting early disease progression, long survivors who achieve durable disease control, and the remaining short-term responders. We reported that the prediction formula comprised of the percentages of CD62L-downregulated (CD62Llow) and CD25+FOXP3+CD4+T cells in the peripheral blood predicted non-responders of non-small cell lung cancer patients (n = 50) scheduled to receive anti-PD-1-antibody (nivolumab) therapy in the 2017 ASCO meeting. In this study, we included 171 patients with NSCLC who were scheduled for nivolumab treatment after obtaining written informed consent. Peripheral blood mononuclear cells (PBMC) were examined before and after Nivolumab therapy up to 2 years to investigate the differences between long survivors and short-term responders. Methods: The patients received Nivolumab at a dose of 3 mg per kilogram of body weight every 2 weeks. Tumor response was assessed with the use of the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, at week 8 and every 8 weeks thereafter. PBMCs were analyzed with a 18-color microfluorometer, LSR Fortessa and a masscytometer, CyTOF. Results: The responder-type patient group whose prediction formula values were greater than 192 showed significantly longer PFS ( P< 0.0001) and OS ( P< 0.0001). The long survivors who consisted of tail plateau of PFS exhibited significantly more CD62LlowCD4+T cells than the short-term responders as pre-existing immunity. The remaining responders kept significantly higher percentages of CD62LlowCD4+T cells ( P= 0.0088) and prediction formula values ( P= 0.017) than the patients with acquired resistance. Conclusions: The pre-existing CD4+T cell balance between primed effector and regulatory T cells correlated with anti-PD-1 therapy response. Further, CD62Llowcell-dominant CD4+T cell immunity was required to maintain durable antitumor reactivity induced by anti-PD-1 antibody therapy. These results have important clinical implication, as they support anti-PD-1 therapy provision to all potentially responding patients and pave the way for new treatment strategies for patients with distinct CD4+T cell immune statuses. Clinical trial information: UMIN000020719.


2008 ◽  
Vol 83 (3) ◽  
pp. 1501-1510 ◽  
Author(s):  
Rosemarie D. Mason ◽  
Sheilajen Alcantara ◽  
Viv Peut ◽  
Liyen Loh ◽  
Jeffrey D. Lifson ◽  
...  

ABSTRACT Practical immunotherapies for human immunodeficiency virus infection are needed. We evaluated inactivated simian immunodeficiency virus (SIV) pulsed onto fresh peripheral blood mononuclear cells in 12 pigtail macaques with chronic SIVmac251 infection for T-cell immunogenicity in a randomized cross-over design study. The immunotherapy was safe and convincingly induced high levels of SIV-specific CD4+ T-cell responses (mean, 5.9% ± 1.3% of all CD4+ T cells) and to a lesser extent SIV-specific CD8+ T-cell responses (mean, 0.7% ± 0.4%). Responses were primarily directed toward Gag and less frequently toward Env but not Pol or regulatory/accessory SIV proteins. T-cell responses against Gag were generally broad and polyfunctional, with a mean of 2.7 CD4+ T-cell epitopes mapped per animal and more than half of the SIV Gag-specific CD4+ T cells expressing three or more effector molecules. The immunogenicity was comparable to that found in previous studies of peptide-pulsed blood cells. Despite the high-level immunogenicity, no reduction in viral load was observed in the chronically viremic macaques. This contrasts with our studies of immunization with peptide-pulsed blood cells during early SIV infection in macaques. Future studies of inactivated virus-pulsed blood cell immunotherapy during early infection of patients receiving antiretroviral therapy are warranted.


Author(s):  
Federica Cappuccini ◽  
Richard Bryant ◽  
Emily Pollock ◽  
Lucy Carter ◽  
Clare Verrill ◽  
...  

AbstractProstate cancer (PCa) has been under investigation as a target for antigen-specific immunotherapies in metastatic disease settings for a decade. However, neither of the two clinically most developed prostate cancer vaccines, Sipuleucel-T and ProstVac, induce strong T cell immunity. In this first-in-man study, VANCE, we evaluated a novel vaccination platform based on two replication-deficient viruses, chimpanzee adenovirus (ChAd) and MVA (Modified Vaccinia Ankara), targeting the oncofetal self-antigen 5T4 in early stage PCa. Forty patients, either newly diagnosed with early stage prostate cancer and scheduled for radical prostatectomy or patients with stable disease on an active surveillance protocol, were recruited to the study to assess the vaccine safety and T cell immunogenicity. Secondary and exploratory endpoints included immune infiltration into the prostate, prostate specific antigen (PSA) change and assessment of phenotype and functionality of antigen-specific T cells. The vaccine had an excellent safety profile. Vaccination-induced 5T4-specific T cell responses were measured in blood by ex vivo IFN-γ ELISpot and were detected in the majority of patients with a mean level in responders of 198 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis demonstrated the presence of both CD8+ and CD4+ polyfunctional 5T4-specific T cells in the circulation. 5T4-reactive tumour infiltrating lymphocytes (TILs) were isolated from post-treatment prostate tissue. Some of the patients had a transient PSA rise 2-8 weeks following vaccination, possibly indicating an inflammatory response in the target organ. The potent T cell responses elicited support the evaluation of these vectored vaccine in efficacy trials.


2021 ◽  
Author(s):  
Percy Knolle ◽  
Nina Körber ◽  
Alina Priller ◽  
Sarah Yazici ◽  
Tanja Bauer ◽  
...  

Abstract Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is controlled by the host´s immune response1-4, but longitudinal follow-up studies of virus-specific immunity to evaluate protection from re-infection are lacking. Here, we report the results from a prospective study that started during the first wave of the COVID-19 pandemic in spring 2020, where we identified 91 convalescents from mild SARS-CoV-2 infection among 4554 health care workers. We followed the dynamics and magnitude of spike-specific immunity in convalescents during the spontaneous course over ≥ 9 months, after SARS-CoV-2 re-exposure and after BNT162b2 mRNA vaccination. Virus-neutralizing antibodies and spike-specific T cell responses with predominance of IL-2-secreting polyfunctional CD4 T cells continuously declined over 9 months, but remained detectable at low levels. After a single vaccination, convalescents simultaneously mounted strong antibody and T cell responses against the SARS-CoV-2 spike proteins. In naïve individuals, a prime vaccination induced preferentially IL-2-secreting CD4 T cells that preceded production of spike-specific virus-neutralizing antibodies after boost vaccination. Response to vaccination, however, was not homogenous. Compared to four individuals among 455 naïve vaccinees (0.9%), we identified 5/82 (6.1%) convalescents with a delayed response to vaccination. These convalescents had originally developed dysfunctional spike-specific immune responses after SARS-CoV-2 infection, and required prime and boost vaccination to develop strong spike-specific immunity. Importantly, during the second wave of the COVID-19 pandemic in fall/winter of 2021 and prior to vaccination we detected a surge of virus-neutralizing antibodies consistent with re-exposure to SARS-CoV-2 in 6 out of 82 convalescents. The selective increase in virus-neutralizing antibodies occurred without systemic re-activation of spike-specific T cell immunity, whereas a single BNT162b2 mRNA vaccination sufficed to induce strong spike-specific antibody and systemic T cell responses in the same individuals. These results support the notion that BNT162b2 mRNA vaccination synchronizes spike-specific immunity in all convalescents of mild SARS-CoV-2 infection and may provide additional protection from re-infection by inducing more rigorous stimulation of spike-specific T cell immunity than re-exposure with SARS-CoV-2.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 630-630
Author(s):  
Maher K Gandhi ◽  
Rebekah M Brennan ◽  
Leesa Wockner ◽  
Pratip K Chattopadhyay ◽  
Mario Roederer ◽  
...  

Abstract In Epstein-Barr virus (EBV) classical Hodgkin lymphoma (EBV+ cHL), Hodgkin-Reed Sternberg cell antigen presentation is intact, with viral expression restricted to sub-dominant latent-antigens including LMP1/2A. Large epidemiological studies have reported differential HLA-class I (HLA-I) susceptibility to EBV+ cHL. The functional basis for these observations is unknown. HLA-I molecules present viral peptides for recognition by CD8+ T-cells, and it may be that the relative risk of developing EBV+ cHL is due to HLA-I alleles influencing the magnitude of CD8+ T-cell immunity against relevant EBV-specific antigens. However this remains speculative, with immunological evidence lacking. Several non-HLA-I linked genetic susceptibility loci have been identified, and HLA-I associations may simply represent markers for genes of diverse functions that are in linkage disequilibrium to the HLA-I region. We undertook an Australasian Leukaemia and Lymphoma Group study to address this fundamental question, utilizing 4 distinct but complimentary experimental approaches. 1. 9 EBV+ cHL and 11 EBV-ve cHL pre-therapy PBMC samples were tested for ex-vivo IFNγ, TNFα and CD107a CD8+ T-cell immunity, using overlapping LMP1 and LMP2A peptide pools. The non-HRS expressed EBV-lytic protein BZLF1 was a control. Highly stringent FACS gating was used to maximize specificity. Results were interrogated using Profile and SPICE analysis. Interestingly IFNγ, TNFα and CD107 CD8+ T-cell responses in HLA-A*02 EBV+ cHL (but not EBV-ve cHL) patients were greater than non-HLA-A*02 (LMP1 p=0.002; LMP2A p=0.03; combined LMP1/LMP2A p=0.005), whereas BZLF1 was equivalent, indicating that HLA-I provides differential CD8+ T-cell immunity against relevant EBV-latent antigens in EBV+ cHL but not EBV-ve cHL. 2. However, up to 4 different HLA-A/B molecules can potentially present relevant EBV-derived epitopes in each individual, adding a confounding layer of complexity to single allele-based effects. To overcome this and enhance sensitivity, we used the mutant HLA-I 721.221 cell-line (pulsed with LMP2A), transfected with either HLA-A*01, HLA-A*02, HLA-A*03 or HLA-B*08 alleles, as antigen presenting cells to in-vitro expand LMP2A-specific CD8+ T-cells from HLA-A*02 heterozygotes. This found ∼90% of the HLA-I LMP2A response was restricted through HLA-A*02. 3. In contrast to EBV+ cHL, in EBV-post-transplant lymphoproliferative disorders (EBV+ PTLD) the immunogenic EBNA3A/3B/3C latent-antigens are expressed. We compared HLA-I associations in 110 cHL (35% EBV+ cHL) to 153 PTLD (63% EBV+ PTLD) patients. Using Bonferoni corrected statistics, we confirmed that HLA-A*02 and HLA-A*01 homozygotes had lower and higher susceptibility to EBV+ cHL respectively, and that HLA-B*37 was positively associated. Notably, no HLA-I associations with EBV+ PTLD were found. 4. To investigate the impact of HLA-I on the hierarchy of CD8+ T-cell immunity to sub-dominant (LMP1/2A) and immune-dominant (EBNA3A/3B/3C) EBV-latent proteins, we analysed the diversity of HLA-class I restricted T-cells in 30 healthy EBV+ participants. To supplement 30 ‘defined' (i.e. validated) HLA-I EBV-latent antigen epitopes and expand HLA-I coverage, we identified 31 ‘SYFPEITHI' bioinformatically ‘predicted' peptide epitopes for HLA-A*01, HLA-A*03 or HLA-B*37 restricted EBV-latent antigens. All SYFPEITHI scores were ≥21, and thermal stability circular dichroism analysis (HLA-A*01) or MHC stabilization assays on T2 cells (HLA-A*03) confirmed peptide binding to HLA-I. Ex-vivo CD107 CD8+ T-cell assays for the 61 peptides, found that sub-dominant LMP1/2A-specific peptide responses were largely confined to HLA-A*02 (Fig 1A), whilst immuno-dominant CD8+ T-cell responses were stimulated by peptides presented by numerous HLA-I alleles (Fig 1B). These data combined illustrate that differential HLA-I-associated susceptibility to EBV+ cHL reflects altered EBV latent antigen-specific CD8+ T-cell immune hierarchies. For lymphomas expressing a restricted set of poorly immunogenic proteins, even modest CD8+ T-cell responses against relevant tumor-associated proteins confer protection, with broad implications for EBV-vaccine design. Studies are required to determine if similar mechanisms are applicable to non-lymphoid EBV+ malignancies with restricted latency such as undifferentiated nasopharngeal carcinoma. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Zelalem A. Mekonnen ◽  
Branka Grubor-Bauk ◽  
Kieran English ◽  
Preston Leung ◽  
Makutiro G. Masavuli ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is a significant contributor to the global disease burden, and development of an effective vaccine is required to eliminate HCV infections worldwide. CD4+ and CD8+ T cell immunity correlates with viral clearance in primary HCV infection, and intrahepatic CD8+ tissue-resident memory T (TRM) cells provide lifelong and rapid protection against hepatotropic pathogens. Consequently, we aimed to develop a vaccine to elicit HCV-specific CD4+ and CD8+ T cells, including CD8+ TRM cells, in the liver, given that HCV primarily infects hepatocytes. To achieve this, we vaccinated wild-type BALB/c mice with a highly immunogenic cytolytic DNA vaccine encoding a model HCV (genotype 3a) nonstructural protein (NS5B) and a mutant perforin (pVAX-NS5B-PRF), as well as a recombinant adeno-associated virus (AAV) encoding NS5B (rAAV-NS5B). A novel fluorescent target array (FTA) was used to map immunodominant CD4+ T helper (TH) cell and cytotoxic CD8+ T cell epitopes of NS5B in vivo, which were subsequently used to design a KdNS5B451-459 tetramer and analyze NS5B-specific T cell responses in vaccinated mice in vivo. The data showed that intradermal prime/boost vaccination with pVAX-NS5B-PRF was effective in eliciting TH and cytotoxic CD8+ T cell responses and intrahepatic CD8+ TRM cells, but a single intravenous dose of hepatotropic rAAV-NS5B was significantly more effective. As a T-cell-based vaccine against HCV should ideally result in localized T cell responses in the liver, this study describes primary observations in the context of HCV vaccination that can be used to achieve this goal. IMPORTANCE There are currently at least 71 million individuals with chronic HCV worldwide and almost two million new infections annually. Although the advent of direct-acting antivirals (DAAs) offers highly effective therapy, considerable remaining challenges argue against reliance on DAAs for HCV elimination, including high drug cost, poorly developed health infrastructure, low screening rates, and significant reinfection rates. Accordingly, development of an effective vaccine is crucial to HCV elimination. An HCV vaccine that elicits T cell immunity in the liver will be highly protective for the following reasons: (i) T cell responses against nonstructural proteins of the virus are associated with clearance of primary infection, and (ii) long-lived liver-resident T cells alone can protect against malaria infection of hepatocytes. Thus, in this study we exploit promising vaccination platforms to highlight strategies that can be used to evoke highly functional and long-lived T cell responses in the liver for protection against HCV.


2004 ◽  
Vol 78 (24) ◽  
pp. 13934-13942 ◽  
Author(s):  
N. N. Zheng ◽  
N. B. Kiviat ◽  
P. S. Sow ◽  
S. E. Hawes ◽  
A. Wilson ◽  
...  

ABSTRACT Human immunodeficiency virus type 2 (HIV-2) infection is typically less virulent than HIV-1 infection, which may permit the host to mount more effective, sustained T-cell immunity. We investigated antiviral gamma interferon-secreting T-cell responses by an ex vivo Elispot assay in 68 HIV-1- and 55 HIV-2-infected Senegalese patients to determine if differences relate to more efficient HIV-2 control. Homologous HIV-specific T cells were detected in similar frequencies (79% versus 76%, P = 0.7) and magnitude (3.12 versus 3.08 log10 spot-forming cells/106 peripheral blood mononuclear cells) in HIV-1 and HIV-2 infection, respectively. Gag-specific responses predominated in both groups (≥64%), and significantly higher Nef-specific responses occurred in HIV-1-infected (54%) than HIV-2-infected patients (22%) (P < 0.001). Heterologous responses were more frequent in HIV-1 than in HIV-2 infection (46% versus 27%, P = 0.04), but the mean magnitude was similar. Total frequencies of HIV-specific responses in both groups did not correlate with plasma viral load and CD4+ T-cell count in multivariate regression analyses. However, the magnitude of HIV-2 Gag-specific responses was significantly associated with lower plasma viremia in HIV-1-infected patients (P = 0.04). CD4+ T-helper responses, primarily recognizing HIV-2 Gag, were detected in 48% of HIV-2-infected compared to only 8% of HIV-1-infected patients. These findings indicate that improved control of HIV-2 infection may relate to the contribution of T-helper cell responses. By contrast, the superior control of HIV-1 replication associated with HIV-2 Gag responses suggests that these may represent cross-reactive, higher-avidity T cells targeting epitopes within Gag regions of functional importance in HIV replication.


2017 ◽  
Vol 91 (24) ◽  
Author(s):  
Alba Grifoni ◽  
John Pham ◽  
John Sidney ◽  
Patrick H. O'Rourke ◽  
Sinu Paul ◽  
...  

ABSTRACT While progress has been made in characterizing humoral immunity to Zika virus (ZIKV) in humans, little is known regarding the corresponding T cell responses to ZIKV. Here, we investigate the kinetics and viral epitopes targeted by T cells responding to ZIKV and address the critical question of whether preexisting dengue virus (DENV) T cell immunity modulates these responses. We find that memory T cell responses elicited by prior infection with DENV or vaccination with tetravalent dengue attenuated vaccines (TDLAV) recognize ZIKV-derived peptides. This cross-reactivity is explained by the sequence similarity of the two viruses, as the ZIKV peptides recognized by DENV-elicited memory T cells are identical or highly conserved in DENV and ZIKV. DENV exposure prior to ZIKV infection also influences the timing and magnitude of the T cell response. ZIKV-reactive T cells in the acute phase of infection are detected earlier and in greater magnitude in DENV-immune patients. Conversely, the frequency of ZIKV-reactive T cells continues to rise in the convalescent phase in DENV-naive donors but declines in DENV-preexposed donors, compatible with more efficient control of ZIKV replication and/or clearance of ZIKV antigen. The quality of responses is also influenced by previous DENV exposure, and ZIKV-specific CD8 T cells from DENV-preexposed donors selectively upregulated granzyme B and PD1, unlike DENV-naive donors. Finally, we discovered that ZIKV structural proteins (E, prM, and C) are major targets of both the CD4 and CD8 T cell responses, whereas DENV T cell epitopes are found primarily in nonstructural proteins. IMPORTANCE The issue of potential ZIKV and DENV cross-reactivity and how preexisting DENV T cell immunity modulates Zika T cell responses is of great relevance, as the two viruses often cocirculate and Zika virus has been spreading in geographical regions where DENV is endemic or hyperendemic. Our data show that memory T cell responses elicited by prior infection with DENV recognize ZIKV-derived peptides and that DENV exposure prior to ZIKV infection influences the timing, magnitude, and quality of the T cell response. Additionally, we show that ZIKV-specific responses target different proteins than DENV-specific responses, pointing toward important implications for vaccine design against this global threat.


Sign in / Sign up

Export Citation Format

Share Document