scholarly journals Cooperative Regulation of ADE3 Transcription by Gcn4p and Bas1p in Saccharomyces cerevisiae

2009 ◽  
Vol 8 (8) ◽  
pp. 1268-1277 ◽  
Author(s):  
Yoo Jin Joo ◽  
Jung-Ae Kim ◽  
Joung Hee Baek ◽  
Ki Moon Seong ◽  
Kyung-Duk Han ◽  
...  

ABSTRACT The one-carbon response regulon is essential for the biosynthesis of nucleic acids as well as several amino acids. The ADE3 gene is known to encode a crucial one-carbon regulon enzyme, tetrahydrofolate synthase, which is involved in the biosynthesis of purine and the amino acids methionine and glycine. Therefore, the mechanism through which ADE3 transcription is regulated appears to be critical for the cross-talk among these metabolic pathways. Even so, the direct involvement of ADE3 transcription through gene-specific transcription factors has not been shown clearly. In this study, the promoter structure of the ADE3 gene was investigated in detail, and a genuine Gcn4p responsive element (GCRE) was confirmed among three putative GCRE elements in vivo and in vitro. Through gene deletion studies of Gcn4p and Bas1p, it was established that both factors are involved in the transcriptional regulation of the ADE3 gene. Direct binding to this GCRE and the occupancy of the ADE3 promoter by these factors were also confirmed. Taking these results together, we concluded that Gcn4p is responsible for the basal and inducible expression of the ADE3 gene, while Bas1p is required for its basal expression.

2020 ◽  
Vol 26 (42) ◽  
pp. 5414-5429 ◽  
Author(s):  
Rasika Suryawanshi ◽  
Jovita Kanoujia ◽  
Poonam Parashar ◽  
Shubhini. A. Saraf

Sericin is a unique proteinaceous biopolymer obtained from cocoons of Bombyx Mori. It has become very popular since it is bestowed with numerous health benefits. Sericin is composed of 18 types of amino acids, out of which 8 amino acids play a significant role in human metabolic pathways. Sericin is easily amenable to make into novel dosage forms and also has been conferred with numerous therapeutic activities such as wound healing, antihypertensive, neuro-protective, antitumor, anti-diabetic, anti-wrinkle, anti-ageing and antioxidant amongst various others. This review summarizes the current status of sericin, as a therapeutic moiety with a focus on active constituents as well as their proposed mechanism in the treatment of various chronic diseases. It also summarizes previous and current in-vitro, in-vivo, cell lines studies and clinical trials based pieces of evidence corroborating the therapeutic activities of sericin.


2018 ◽  
Vol 11 (1) ◽  
pp. 110-127
Author(s):  
J. Csapó ◽  
Cs. Albert ◽  
D. Kiss

Abstract We have developed methods for the production of protected methionine and protected lysine, making use of the reaction between citric acid and malic acid as well as methionine and lysine, on the one hand, and of the interaction between swollen bentonite and the two amino acids, on the other hand. Our in vivo and in vitro experiments have demonstrated that one part of the amino acids transformed during the reaction, while another part bound on the bentonite’s surface to a significant degree. Assisted by the reaction between hydroxycarboxylic acids and amino acids, we achieved a protection of about 75% for methionine and 60% for lysine, that is, 25% of the methionine and 40% of the lysine appeared in the free amino acid fraction. The swollen bentonite bound 75% of the added methionine and 60% of the added lysine. Our chemical analyses have demonstrated that through the time–temperature combinations applied by us the methionine and lysine do not undergo significant degradation and can be fully released from the protected form. Further, our in vitro experiments using rumen fluid from fistulated cattle showed that during the average retention time of the fodder in the rumen the protected amino acids will resist microbial enzymes and maintain their protected status during their presence in the rumen.


2018 ◽  
Vol 38 (7) ◽  
Author(s):  
Aki Ushiki ◽  
Hitomi Matsuzaki ◽  
Akiyoshi Fukamizu ◽  
Keiji Tanimoto

ABSTRACT The renin-angiotensin system plays an essential role in blood pressure homeostasis. Because renin activity is reflected as a blood pressure phenotype, its gene expression in the kidney is tightly regulated by a feedback mechanism; i.e., renin gene transcription is suppressed in a hypertensive state. To address the molecular mechanisms controlling hypertension-responsive mouse renin (m Ren ) gene regulation, we deleted either 5′ (17-kb) or 3′ (78-kb) regions of the endogenous m Ren gene and placed the animals in a hypertensive environment. While the m Ren gene bearing the 3′ deletion was appropriately downregulated, the one bearing the 5′ deletion lost this hypertension responsiveness. Because the 17-kb sequence exhibited enhancer activity in vivo and in vitro , we narrowed down the enhancer to a 2.3-kb core using luciferase assays in As4.1 cells. When this 2.3-kb sequence was removed from the endogenous m Ren gene in the mouse, its basal expression was dramatically reduced, and the hypertension responsiveness was significantly attenuated. Furthermore, we demonstrated that the angiotensin II signal played an important role in m Ren gene suppression. We propose that in a hypertensive environment, the activity of this novel enhancer is attenuated, and, as a consequence, m Ren gene transcription is suppressed to maintain blood pressure.


1995 ◽  
Vol 60 (12) ◽  
pp. 2170-2177 ◽  
Author(s):  
Zdenko Procházka ◽  
Jiřina Slaninová
Keyword(s):  

Solid phase technique on p-methylbenzhydrylamine resin was used for the synthesis of four analogs of oxytocin and four analogs of vasopressin with the non-coded amino acids L- or D- and 1- or 2-naphthylalanine and D-homoarginine. [L-1-Nal2]oxytocin, [D-1-Nal2]oxytocin, [L-2-Nal2]oxytocin, [D-2-Nal2]oxytocin, [L-1-Nal2, D-Har8]vasopressin, [D-1-Nal2, D-Har8]vasopressin, [L-2-Nal2, D-Har8]vasopressin and [D-2-Nal2, D-Har8]vasopressin were synthesized. All eight analogs were found to be uterotonic inhibitors in vitro and in vivo. Analogs with 2-naphthylalanine are stronger inhibitors, particularly in the vasopressin series than the analogs with 1-naphthylalanine. Analogs with 1-naphthylalanine have no activity in the pressor test, analogs with 2-naphthylalanine are weak pressor inhibitors.


2021 ◽  
Author(s):  
Li-Nan Wang ◽  
Xiang-Lei Peng ◽  
Min Xu ◽  
Yuan-Bo Zheng ◽  
Yue-Ying Jiao ◽  
...  

AbstractHuman respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5′ to 3′) a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4587
Author(s):  
Fanny d’Orlyé ◽  
Laura Trapiella-Alfonso ◽  
Camille Lescot ◽  
Marie Pinvidic ◽  
Bich-Thuy Doan ◽  
...  

There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.


2020 ◽  
Vol 175 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Nivedita Banerjee ◽  
Hui Wang ◽  
Gangduo Wang ◽  
M Firoze Khan

Abstract Trichloroethene (trichloroethylene, TCE) and one of its reactive metabolites dichloroacetyl chloride (DCAC) are associated with the induction of autoimmunity in MRL+/+ mice. Although oxidative stress plays a major role in TCE-/DCAC-mediated autoimmunity, the underlying molecular mechanisms still need to be delineated. Nuclear factor (erythroid-derived 2)-like2 (Nrf2) is an oxidative stress-responsive transcription factor that binds to antioxidant responsive element (ARE) and provides protection by regulating cytoprotective and antioxidant gene expression. However, the potential of Nrf2 in the regulation of TCE-/DCAC-mediated autoimmunity is not known. This study thus focused on establishing the role of Nrf2 and consequent inflammatory responses in TCE-/DCAC-mediated autoimmunity. To achieve this, we pretreated Kupffer cells (KCs) or T cells with/without tert-butylhydroquinone (tBHQ) followed by treatment with DCAC. In both KCs and T cells, DCAC treatment significantly downregulated Nrf2 and HO-1 expression along with induction of Keap-1 and caspase-3, NF-κB (p65), TNF-α, and iNOS, whereas pretreatment of these cells with tBHQ attenuated these responses. The in vitro findings were further verified in vivo by treating female MRL+/+ mice with TCE along with/without sulforaphane. TCE exposure in mice also led to reduction in Nrf2 and HO-1 but increased phospho-NF-κB (p-p65) and iNOS along with increased anti-dsDNA antibodies. Interestingly, sulforaphane treatment led to amelioration of TCE-mediated effects, resulting in Nrf2 activation and reduction in inflammatory and autoimmune responses. Our results show that TCE/DCAC mediates an impairment in Nrf2 regulation. Attenuation of TCE-mediated autoimmunity via activation of Nrf2 supports that antioxidants sulforaphane/tBHQ could be potential therapeutic agents for autoimmune diseases.


1980 ◽  
Vol 238 (1) ◽  
pp. E46-E52
Author(s):  
S. L. Augustine ◽  
R. W. Swick

The recovery of approximately 40% of the total liver protein during the first day after partial hepatectomy was shown to be due to the near cessation of protein breakdown rather than to an increase in protein synthesis. The decrease in degradation of total protein was less if rats were adrenalectomized or protein-depleted prior to partial hepatectomy. The effect of these treatments originally suggested that changes in free amino acid levels in liver might be related to the rate of protein degradation. However, no correlation was found between levels of total free amino acids and rates of breakdown. Measurements of individual amino acids during liver regeneration suggested that levels of free methionine and phenylalanine, amino acids that have been found to lower rates of protein degradation in vitro, are not correlated with rates of breakdown in vivo. The difference between the fractional rate of ornithine aminotransferase degradation (0.68/day and 0.28/day in sham-hepatectomized and partially hepatectomized rats, respectively) was sufficient to account for the higher level of this protein 3 days after surgery in the latter group.


1998 ◽  
Vol 22 ◽  
pp. 306-308
Author(s):  
M. D. Carro ◽  
E. L. Miller

The estimation of rumen microbial protein synthesis is one of the main points in the nitrogen (N)-rationing systems for ruminants, as microbial protein provides proportionately 0.4 to 0.9 of amino acids entering the small intestine in ruminants receiving conventional diets (Russell et al., 1992). Methods of estimating microbial protein synthesis rely on marker techniques in which a particular microbial constituent is related to the microbial N content. Marker : N values have generally been established in mixed bacteria isolated from the liquid fraction of rumen digesta and it has been assumed that the same relationship holds in the total population leaving the rumen (Merry and McAllan, 1983). However, several studies have demonstrated differences in composition between solid-associated (SAB) and fluid-associated bacteria in vivo (Legay-Carmier and Bauchart, 1989) and in vitro (Molina Alcaide et al, 1996), as well in marker : N values (Pérez et al., 1996). This problem could be more pronounced in the in vitro semi-continuous culture system RUSITEC, in which there are three well defined components (a free liquid phase, a liquid phase associated with the solid phase and a solid phase), each one having associated microbial populations.The objective of this experiment was to investigate the effect of using different bacterial isolates (BI) on the estimation of microbial production of four different diets in RUSITEC (Czerkawski and Breckenridge, 1977), using (15NH4)2 SO4 as microbial marker, and to assess what effects any differences would have on the comparison of microbial protein synthesis between diets.This study was conducted in conjunction with an in vitro experiment described by Carro and Miller (1997). Two 14-day incubation trials were carried out with the rumen simulation technique RUSITEC (Czerkawski and Breckenridge, 1977). The general incubation procedure was the one described by Czerkawski and Breckenridge (1977) and more details about the procedures of this experiment are given elsewhere (Carro and Miller, 1997).


Sign in / Sign up

Export Citation Format

Share Document