Sericin: A Versatile Protein Biopolymer with Therapeutic Significance

2020 ◽  
Vol 26 (42) ◽  
pp. 5414-5429 ◽  
Author(s):  
Rasika Suryawanshi ◽  
Jovita Kanoujia ◽  
Poonam Parashar ◽  
Shubhini. A. Saraf

Sericin is a unique proteinaceous biopolymer obtained from cocoons of Bombyx Mori. It has become very popular since it is bestowed with numerous health benefits. Sericin is composed of 18 types of amino acids, out of which 8 amino acids play a significant role in human metabolic pathways. Sericin is easily amenable to make into novel dosage forms and also has been conferred with numerous therapeutic activities such as wound healing, antihypertensive, neuro-protective, antitumor, anti-diabetic, anti-wrinkle, anti-ageing and antioxidant amongst various others. This review summarizes the current status of sericin, as a therapeutic moiety with a focus on active constituents as well as their proposed mechanism in the treatment of various chronic diseases. It also summarizes previous and current in-vitro, in-vivo, cell lines studies and clinical trials based pieces of evidence corroborating the therapeutic activities of sericin.

2021 ◽  
Vol 12 ◽  
Author(s):  
Safaet Alam ◽  
Taslima Binte Kamal ◽  
Md. Moklesur Rahman Sarker ◽  
Jin-Rong Zhou ◽  
S. M. Abdur Rahman ◽  
...  

COVID-19, transmitted by SARS-CoV-2, is one of the most serious pandemic situations in the history of mankind, and has already infected a huge population across the globe. This horrendously contagious viral outbreak was first identified in China and within a very short time it affected the world's health, transport, economic, and academic sectors. Despite the recent approval of a few anti-COVID-19 vaccines, their unavailability and insufficiency along with the lack of other potential therapeutic options are continuing to worsen the situation, with valuable lives continuing to be lost. In this situation, researchers across the globe are focusing on repurposing prospective drugs and prophylaxis such as favipiravir, remdesivir, chloroquine, hydroxychloroquine, ivermectin, lopinavir-ritonavir, azithromycin, doxycycline, ACEIs/ARBs, rivaroxaban, and protease inhibitors, which were preliminarily based on in vitro and in vivo pharmacological and toxicological study reports followed by clinical applications. Based on available preliminary data derived from limited clinical trials, the US National Institute of Health (NIH) and USFDA also recommended a few drugs to be repurposed i.e., hydroxychloroquine, remdesivir, and favipiravir. However, World Health Organization later recommended against the use of chloroquine, hydroxychloroquine, remdesivir, and lopinavir/ritonavir in the treatment of COVID-19 infections. Combining basic knowledge of viral pathogenesis and pharmacodynamics of drug molecules as well as in silico approaches, many drug candidates have been investigated in clinical trials, some of which have been proven to be partially effective against COVID-19, and many of the other drugs are currently under extensive screening. The repurposing of prospective drug candidates from different stages of evaluation can be a handy wellspring in COVID-19 management and treatment along with approved anti-COVID-19 vaccines. This review article combined the information from completed clinical trials, case series, cohort studies, meta-analyses, and retrospective studies to focus on the current status of repurposing drugs in 2021.


2020 ◽  
Vol 11 (1) ◽  
pp. 204-204
Author(s):  
Solmaz Ghaffari ◽  
Faezeh Alihosseini ◽  
Seyed Mahdi Rezayat Sorkhabadi ◽  
Sepideh Arbabi Bidgoli ◽  
Seyyedeh Elaheh Mousavi ◽  
...  

2009 ◽  
Vol 8 (8) ◽  
pp. 1268-1277 ◽  
Author(s):  
Yoo Jin Joo ◽  
Jung-Ae Kim ◽  
Joung Hee Baek ◽  
Ki Moon Seong ◽  
Kyung-Duk Han ◽  
...  

ABSTRACT The one-carbon response regulon is essential for the biosynthesis of nucleic acids as well as several amino acids. The ADE3 gene is known to encode a crucial one-carbon regulon enzyme, tetrahydrofolate synthase, which is involved in the biosynthesis of purine and the amino acids methionine and glycine. Therefore, the mechanism through which ADE3 transcription is regulated appears to be critical for the cross-talk among these metabolic pathways. Even so, the direct involvement of ADE3 transcription through gene-specific transcription factors has not been shown clearly. In this study, the promoter structure of the ADE3 gene was investigated in detail, and a genuine Gcn4p responsive element (GCRE) was confirmed among three putative GCRE elements in vivo and in vitro. Through gene deletion studies of Gcn4p and Bas1p, it was established that both factors are involved in the transcriptional regulation of the ADE3 gene. Direct binding to this GCRE and the occupancy of the ADE3 promoter by these factors were also confirmed. Taking these results together, we concluded that Gcn4p is responsible for the basal and inducible expression of the ADE3 gene, while Bas1p is required for its basal expression.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1160 ◽  
Author(s):  
Louise Coppin ◽  
Etienne Sokal ◽  
Xavier Stéphenne

Mesenchymal stem cells (MSCs) are currently studied and used in numerous clinical trials. Nevertheless, some concerns have been raised regarding the safety of these infusions and the thrombogenic risk they induce. MSCs express procoagulant activity (PCA) linked to the expression of tissue factor (TF) that, when in contact with blood, initiates coagulation. Some even describe a dual activation of both the coagulation and the complement pathway, called Instant Blood-Mediated Inflammatory Reaction (IBMIR), explaining the disappointing results and low engraftment rates in clinical trials. However, nowadays, different approaches to modulate the PCA of MSCs and thus control the thrombogenic risk after cell infusion are being studied. This review summarizes both in vitro and in vivo studies on the PCA of MSC of various origins. It further emphasizes the crucial role of TF linked to the PCA of MSCs. Furthermore, optimization of MSC therapy protocols using different methods to control the PCA of MSCs are described.


Author(s):  
Md. Junaid ◽  
Yeasmin Akter ◽  
Aysha Siddika ◽  
S. M. Abdul Nayeem ◽  
Afsana Nahrin ◽  
...  

Background: COVID-19 pandemic, the most unprecedented event of the year 2020, has brought millions of scientists worldwide in a single platform to fight against it. Though several drugs are now in the clinical trial, few vaccines available on the market already but the lack of an effect of those is making the situation worse. Aim of the study: In this review, we demonstrated comprehensive data of natural antiviral products showing activities against different proteins of Human Coronaviruses (HCoV) that are responsible for its pathogenesis. Furthermore, we categorized the compounds into the hit, lead, and drug based on the IC50/EC50 value, drug-likeness, and lead-likeness test to portray their potentiality to be a drug. We also demonstrated the present status of our screened antiviral compounds with respect to clinical trials and reported the lead compounds that can be promoted to clinical trial against COVID-19. Methods: A systematic search strategy was employed focusing on Natural Products (NPs) with proven activity (in vitro, in vivo, or in silico) against human coronaviruses, in general, and data were gathered from databases like PubMed, Web of Science, Google Scholar, SciVerse, and Scopus. Information regarding clinical trials retrieved from the Clinical Trial database. Results: Total "245" natural compounds were identified initially from the literature study. Among them, Glycyrrhizin, Caffeic acid, Curcumin is in phase 3, and Tetrandrine, Cyclosporine, Tacrolimus, Everolimus are in phase 4 clinical trial. Except for Glycyrrhizin, all compounds showed activity against COVID-19. Conclusions: In summary, our demonstrated specific small molecules with lead and drug-like capabilities clarified their position in the drug discovery pipeline and proposed their future research against COVID-19.


2018 ◽  
Vol 8 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Solmaz Ghaffari ◽  
Faezeh Alihosseini ◽  
Seyed Mahdi Rezayat Sorkhabadi ◽  
Sepideh Arbabi Bidgoli ◽  
Seyyedeh Elaheh Mousavi ◽  
...  

2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


Sign in / Sign up

Export Citation Format

Share Document