scholarly journals Analysis of Euglena gracilis Plastid-Targeted Proteins Reveals Different Classes of Transit Sequences

2006 ◽  
Vol 5 (12) ◽  
pp. 2079-2091 ◽  
Author(s):  
Dion G. Durnford ◽  
Michael W. Gray

ABSTRACT The plastid of Euglena gracilis was acquired secondarily through an endosymbiotic event with a eukaryotic green alga, and as a result, it is surrounded by a third membrane. This membrane complexity raises the question of how the plastid proteins are targeted to and imported into the organelle. To further explore plastid protein targeting in Euglena, we screened a total of 9,461 expressed sequence tag (EST) clusters (derived from 19,013 individual ESTs) for full-length proteins that are plastid localized to characterize their targeting sequences and to infer potential modes of translocation. Of the 117 proteins identified as being potentially plastid localized whose N-terminal targeting sequences could be inferred, 83 were unique and could be classified into two major groups. Class I proteins have tripartite targeting sequences, comprising (in order) an N-terminal signal sequence, a plastid transit peptide domain, and a predicted stop-transfer sequence. Within this class of proteins are the lumen-targeted proteins (class IB), which have an additional hydrophobic domain similar to a signal sequence and required for further targeting across the thylakoid membrane. Class II proteins lack the putative stop-transfer sequence and possess only a signal sequence at the N terminus, followed by what, in amino acid composition, resembles a plastid transit peptide. Unexpectedly, a few unrelated plastid-targeted proteins exhibit highly similar transit sequences, implying either a recent swapping of these domains or a conserved function. This work represents the most comprehensive description to date of transit peptides in Euglena and hints at the complex routes of plastid targeting that must exist in this organism.

2004 ◽  
Vol 3 (3) ◽  
pp. 663-674 ◽  
Author(s):  
Omar S. Harb ◽  
Bithi Chatterjee ◽  
Martin J. Fraunholz ◽  
Michael J. Crawford ◽  
Manami Nishi ◽  
...  

ABSTRACT Most species of the protozoan phylum Apicomplexa harbor an endosymbiotic organelle—the apicoplast—acquired when an ancestral parasite engulfed a eukaryotic plastid-containing alga. Several hundred proteins are encoded in the parasite nucleus and are posttranslationally targeted to the apicoplast by a distinctive bipartite signal. The N-terminal 20 to 30 amino acids of nucleus-encoded apicoplast targeted proteins function as a classical signal sequence, mediating entry into the secretory pathway. Cleavage of the signal sequence exposes a transit peptide of variable length (50 to 200 amino acids) that is required for directing proteins to the apicoplast. Although these peptides are enriched in basic amino acids, their structural and functional characteristics are not well understood, which hampers the identification of apicoplast proteins that may constitute novel chemotherapeutic targets. To identify functional domains for a model apicoplast transit peptide, we generated more than 80 deletions and mutations throughout the transit peptide of Toxoplasma gondii ferredoxin NADP+ reductase (TgFNR) and examined the ability of these altered transit peptides to mediate proper targeting and processing of a fluorescent protein reporter. These studies revealed the presence of numerous functional domains. Processing can take place at multiple sites in the protein sequence and may occur outside of the apicoplast lumen. The TgFNR transit peptide contains at least two independent and functionally redundant targeting signals, each of which contains a subdomain that is required for release from or proper sorting within the endoplasmic reticulum. Certain deletion constructs traffic to multiple locations, including the apicoplast periphery, the rhoptries, and the parasitophorous vacuole, suggesting a common thread for targeting to these specialized compartments.


1997 ◽  
Vol 321 (3) ◽  
pp. 857-864 ◽  
Author(s):  
Peter LEE-ROBICHAUD ◽  
Mustak A. KADERBHAI ◽  
Naheed KADERBHAI ◽  
J. Neville WRIGHT ◽  
Muhammad AKHTAR

Human CYP17 (P-45017α, 17α-hydroxylase-17,20-lyase)-catalysed side-chain cleavage of 17α-hydroxyprogestogens into androgens is greatly dependent on the presence of cytochrome b5. The native form of cytochrome b5 is composed of a globular core, residues 1Ő98, followed by a membrane insertable C-terminal tail, residues 99Ő133. In the present study the abilities of five different forms of cytochrome b5 to support the side-chain cleavage activity of CYP17 were compared. The five derivatives were: the native pig cytochrome b5 (native pig), its genetically engineered rat counterpart (coreŐtail), the soluble core form of the latter (core), the core with the secretory signal sequence of alkaline phosphatase appended to its N-terminal (signalŐcore) and the latter containing the C-terminal tail of the native rat protein (signalŐcoreŐtail). When examined by Edman degradation and MS, the engineered proteins were shown to have the expected N-terminal amino acid sequences and molecular masses. The native pig was found to be acetylated at the N-terminal. The native pig and coreŐtail enzymes were equally efficient at enhancing the side-chain cleavage activity of human CYP17 and the signalŐcoreŐtail was 55% as efficient. The core and signalŐcore constructs were completely inactive in the aforementioned reaction. All the five derivatives were reduced to varying degrees by NADPH:cytochrome P-450 (NADPH-P450) reductase and the relative efficiencies of this reduction were reminiscent of the behaviour of these derivatives in supporting the side-chain cleavage reaction. In the side-chain cleavage assay, however, NADPH-P450 reductase was used in large excess so that the reduction of cytochrome b5 derivatives was not rate-limiting. The results highlight that productive interaction between cytochrome b5 and CYP17 is governed not only by the presence of a membrane insertable hydrophobic region on the cytochrome b5 but also by its defined spatial orientation at the C-terminal.


2010 ◽  
Vol 188 (4) ◽  
pp. 515-526 ◽  
Author(s):  
Neena S. Rane ◽  
Oishee Chakrabarti ◽  
Lionel Feigenbaum ◽  
Ramanujan S. Hegde

Protein translocation into the endoplasmic reticulum is mediated by signal sequences that vary widely in primary structure. In vitro studies suggest that such signal sequence variations may correspond to subtly different functional properties. Whether comparable functional differences exist in vivo and are of sufficient magnitude to impact organism physiology is unknown. Here, we investigate this issue by analyzing in transgenic mice the impact of signal sequence efficiency for mammalian prion protein (PrP). We find that replacement of the average efficiency signal sequence of PrP with more efficient signals rescues mice from neurodegeneration caused by otherwise pathogenic PrP mutants in a downstream hydrophobic domain (HD). This effect is explained by the demonstration that efficient signal sequence function precludes generation of a cytosolically exposed, disease-causing transmembrane form of PrP mediated by the HD mutants. Thus, signal sequences are functionally nonequivalent in vivo, with intrinsic inefficiency of the native PrP signal being required for pathogenesis of a subset of disease-causing PrP mutations.


1990 ◽  
Vol 110 (4) ◽  
pp. 999-1011 ◽  
Author(s):  
R G Paterson ◽  
R A Lamb

The NH2 terminus of the F1 subunit of the paramyxovirus SV5 fusion protein (fusion related external domain; FRED) is a hydrophobic domain that is implicated as being involved in mediating membrane fusion. We have examined the ability of the FRED to function as a combined signal/anchor domain by substituting it for the natural NH2-terminal signal/anchor domain of a model type II integral membrane protein: the hybrid protein (NAF) was expressed in eukaryotic cells. The FRED was shown to act as a signal sequence, targeting NAF to the lumen of the ER, by the fact that NAF acquired N-linked carbohydrate chains. Alkali fractionation of microsomes indicated that NAF is a soluble protein in the lumen of the ER, and the results of NH2-terminal sequence analysis showed that the FRED is cleaved at a site predicted to be recognized by signal peptidase. NAF was found to be efficiently secreted (t1/2 approximately 90 min) from the cell. By using a combination of sedimentation velocity centrifugation and immunoprecipitation assays using polyclonal and conformation-specific monoclonal antibodies it was found that extracellular NAF consisted of a mixture of monomers, disulfide-linked dimers, and tetramers. The majority of the extracellular NAF molecules were not reactive with the conformation-specific monoclonal antibodies, suggesting they were not folded in a native form and that only the NAF tetramers had matured to a native conformation such that they exhibited NA activity. The available data indicate that NAF is transported intracellularly in multiple oligomeric and conformational forms.


1987 ◽  
Vol 7 (8) ◽  
pp. 2838-2844
Author(s):  
M R Mowatt ◽  
C E Clayton

Trypanosoma brucei undergoes many morphological and biochemical changes during transformation from the bloodstream trypomastigote to the insect procyclic trypomastigote form. We cloned and determined the complete nucleotide sequence of a developmentally regulated cDNA. The corresponding mRNA was abundant in in vitro-cultivated procyclics but absent in bloodstream forms. The trypanosome genome contains eight genes homologous to this cDNA, arranged as four unlinked pairs of tandem repeats. The longest open reading frame of the cDNA predicts a protein of 15 kilodaltons, the central portion of which consists of 29 tandem glutamate-proline dipeptides. The repetitive region is preceded by an amino-terminal signal sequence and followed by a hydrophobic domain that could serve as a membrane anchor; the mRNA was found on membrane-bound polyribosomes. These results suggest that the protein is membrane associated.


2004 ◽  
Vol 165 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Matthew D. Smith ◽  
Caleb M. Rounds ◽  
Fei Wang ◽  
Kunhua Chen ◽  
Meshack Afitlhile ◽  
...  

The members of the Toc159 family of GTPases act as the primary receptors for the import of nucleus-encoded preproteins into plastids. Toc159, the most abundant member of this family in chloroplasts, is required for chloroplast biogenesis (Bauer, J., K. Chen, A. Hiltbunner, E. Wehrli, M. Eugster, D. Schnell, and F. Kessler. 2000. Nature. 403:203–207) and has been shown to covalently cross-link to bound preproteins at the chloroplast surface (Ma, Y., A. Kouranov, S. LaSala, and D.J. Schnell. 1996. J. Cell Biol. 134:1–13; Perry, S.E., and K. Keegstra. 1994. Plant Cell. 6:93–105). These reports led to the hypothesis that Toc159 functions as a selective import receptor for preproteins that are required for chloroplast development. In this report, we provide evidence that Toc159 is required for the import of several highly expressed photosynthetic preproteins in vivo. Furthermore, we demonstrate that the cytoplasmic and recombinant forms of soluble Toc159 bind directly and selectively to the transit peptides of these representative photosynthetic preproteins, but not representative constitutively expressed plastid preproteins. These data support the function of Toc159 as a selective import receptor for the targeting of a set of preproteins required for chloroplast biogenesis.


2000 ◽  
Vol 68 (11) ◽  
pp. 6402-6410 ◽  
Author(s):  
Natalia Gomez-Escobar ◽  
William F. Gregory ◽  
Rick M. Maizels

ABSTRACT A novel member of the transforming growth factor β (TGF-β) family has been identified in the filarial nematode parasiteBrugia malayi by searching the recently developed Expressed Sequence Tag (EST) database produced by the Filarial Genome Project. Designated tgh-2, this new gene shows most similarity to a key product regulating dauer larva formation in Caenorhabditis elegans (DAF-7) and to the human down-modulatory cytokine TGF-β. Homology to DAF-7 extends throughout the length of the 349-amino-acid (aa) protein, which is divided into an N-terminal 237 aa, including a putative signal sequence, a 4-aa basic cleavage site, and a 108-aa C-terminal active domain. Similarity to human TGF-β is restricted to the C-terminal domain, over which there is a 32% identity between TGH-2 and TGF-β1, including every cysteine residue. Expression of tgh-2 mRNA has been measured over the filarial life cycle. It is maximal in the microfilarial stage, with lower levels of activity around the time of molting within the mammal, but continues to be expressed by mature adult male and female parasites. Expression in both the microfilaria, which is in a state of arrested development, and the adult, which is terminally differentiated, indicates that tgh-2 may play a role other than purely developmental. This is consistent with our observation that TGH-2 is secreted by adult worms in vitro. Recombinant TGH-2 expressed in baculovirus shows a low level of binding to TGF-β-receptor bearing mink lung epithelial cells (MELCs), which is partially inhibited (16 to 39%) with human TGF-β, and activates plasminogen activator inhibitor-1 transcription in MELCs, a marker for TGF-β-mediated transduction. Further tests will be required to establish whether the major role of B. malayi TGH-2 (Bm-TGH-2) is to modulate the host immune response via the TGF-β pathway.


1999 ◽  
Vol 147 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Stefan Richter ◽  
Gayle K. Lamppa

A stromal processing peptidase (SPP) cleaves a broad range of precursors targeted to the chloroplast, yielding proteins for numerous biosynthetic pathways in different compartments. SPP contains a signature zinc-binding motif, His-X-X-Glu-His, that places it in a metallopeptidase family which includes the mitochondrial processing peptidase. Here, we have investigated the mechanism of cleavage by SPP, a late, yet key event in the import pathway. Recombinant SPP removed the transit peptide from a variety of precursors in a single endoproteolytic step. Whereas the mature protein was immediately released, the transit peptide remained bound to SPP. SPP converted the transit peptide to a subfragment form that it no longer recognized. We conclude that SPP contains a specific binding site for the transit peptide and additional proteolysis by SPP triggers its release. A stable interaction between SPP and an intact transit peptide was directly demonstrated using a newly developed binding assay. Unlike recombinant SPP, a chloroplast extract rapidly degraded both the transit peptide and subfragment. A new degradative activity, distinguishable from SPP, was identified that is ATP- and metal-dependent. Our results indicate a regulated sequence of events as SPP functions during precursor import, and demonstrate a previously unrecognized ATP-requirement for transit peptide turnover.


2015 ◽  
Vol 112 (13) ◽  
pp. 3943-3948 ◽  
Author(s):  
Ottilie von Loeffelholz ◽  
Qiyang Jiang ◽  
Aileen Ariosa ◽  
Manikandan Karuppasamy ◽  
Karine Huard ◽  
...  

The signal recognition particle (SRP)-dependent pathway is essential for correct targeting of proteins to the membrane and subsequent insertion in the membrane or secretion. In Escherichia coli, the SRP and its receptor FtsY bind to ribosome–nascent chain complexes with signal sequences and undergo a series of distinct conformational changes, which ensures accurate timing and fidelity of protein targeting. Initial recruitment of the SRP receptor FtsY to the SRP–RNC complex results in GTP-independent binding of the SRP–FtsY GTPases at the SRP RNA tetraloop. In the presence of GTP, a closed state is adopted by the SRP–FtsY complex. The cryo-EM structure of the closed state reveals an ordered SRP RNA and SRP M domain with a signal sequence-bound. Van der Waals interactions between the finger loop and ribosomal protein L24 lead to a constricted signal sequence-binding pocket possibly preventing premature release of the signal sequence. Conserved M-domain residues contact ribosomal RNA helices 24 and 59. The SRP–FtsY GTPases are detached from the RNA tetraloop and flexible, thus liberating the ribosomal exit site for binding of the translocation machinery.


Sign in / Sign up

Export Citation Format

Share Document