scholarly journals Surface Localization of the Yps3p Protein of Histoplasma capsulatum

2005 ◽  
Vol 4 (4) ◽  
pp. 685-693 ◽  
Author(s):  
Megan L. Bohse ◽  
Jon P. Woods

ABSTRACT The YPS3 gene of Histoplasma capsulatum encodes a protein that is both resident in the cell wall and also released into the culture medium. This protein is produced only during the pathogenic yeast phase of infection and is also expressed differently in H. capsulatum strains that differ in virulence. We investigated the cellular localization of Yps3p. We demonstrated that the cell wall fraction of Yps3p was surface localized in restriction fragment length polymorphism class 2 strains. We also established that Yps3p released into the G217B culture supernatant binds to the surface of strains that do not naturally express the protein. This binding was saturable and occurred within 5 min of exposure and occurred similarly with live and heat-killed H. capsulatum. Flow cytometric analysis of H. capsulatum after enzymatic treatments was consistent with Yps3p binding to chitin, a carbohydrate polymer that is a component of fungal cell walls. Polysaccharide binding assays demonstrated that chitin but not cellulose binds to and extracts Yps3p from culture supernatants.

mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Andrew L. Garfoot ◽  
Qian Shen ◽  
Marcel Wüthrich ◽  
Bruce S. Klein ◽  
Chad A. Rappleye

ABSTRACTThe fungal pathogenHistoplasma capsulatumparasitizes host phagocytes. To avoid antimicrobial immune responses,Histoplasmayeasts must minimize their detection by host receptors while simultaneously interacting with the phagocyte. PathogenicHistoplasmayeast cells, but not avirulent mycelial cells, secrete the Eng1 protein, which is a member of the glycosylhydrolase 81 (GH81) family. We show thatHistoplasmaEng1 is a glucanase that hydrolyzes β-(1,3)-glycosyl linkages but is not required forHistoplasmagrowthin vitroor for cell separation. However,Histoplasmayeasts lacking Eng1 function have attenuated virulencein vivo, particularly during the cell-mediated immunity stage.Histoplasmayeasts deficient for Eng1 show increased exposure of cell wall β-glucans, which results in enhanced binding to the Dectin-1 β-glucan receptor. Consistent with this, Eng1-deficient yeasts trigger increased tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) cytokine production from macrophages and dendritic cells. While not responsible for large-scale cell wall structure and function, the secreted Eng1 reduces levels of exposed β-glucans at the yeast cell wall, thereby diminishing potential recognition by Dectin-1 and proinflammatory cytokine production by phagocytes. In α-glucan-producingHistoplasmastrains, Eng1 acts in concert with α-glucan to minimize β-glucan exposure: α-glucan provides a masking function by covering the β-glucan-rich cell wall, while Eng1 removes any remaining exposed β-glucans. Thus,HistoplasmaEng1 has evolved a specialized pathogenesis function to remove exposed β-glucans, thereby enhancing the ability of yeasts to escape detection by host phagocytes.IMPORTANCEThe success ofHistoplasma capsulatumas an intracellular pathogen results, in part, from an ability to minimize its detection by receptors on phagocytic cells of the immune system. In this study, we showed thatHistoplasmapathogenic yeast cells, but not avirulent mycelia, secrete a β-glucanase, Eng1, which reduces recognition of fungal cell wall β-glucans. We demonstrated that the Eng1 β-glucanase promotesHistoplasmavirulence by reducing levels of surface-exposed β-glucans on yeast cells, thereby enablingHistoplasmayeasts to escape detection by the host β-glucan receptor, Dectin-1. As a consequence, phagocyte recognition ofHistoplasmayeasts is reduced, leading to less proinflammatory cytokine production by phagocytes and less control ofHistoplasmainfectionin vivo. Thus,Histoplasmayeasts express two mechanisms to avoid phagocyte detection: masking of cell wall β-glucans by α-glucan and enzymatic removal of exposed β-glucans by the Eng1 β-glucanase.


Author(s):  
Leandro do Prado Assunção ◽  
Dayane Moraes ◽  
Lucas Weba Soares ◽  
Mirelle Garcia Silva-Bailão ◽  
Janaina Gomes de Siqueira ◽  
...  

Histoplasma capsulatum is a thermodimorphic fungus that causes histoplasmosis, a mycosis of global incidence. The disease is prevalent in temperate and tropical regions such as North America, South America, Europe, and Asia. It is known that during infection macrophages restrict Zn availability to H. capsulatum as a microbicidal mechanism. In this way the present work aimed to study the response of H. capsulatum to zinc deprivation. In silico analyses showed that H. capsulatum has eight genes related to zinc homeostasis ranging from transcription factors to CDF and ZIP family transporters. The transcriptional levels of ZAP1, ZRT1, and ZRT2 were induced under zinc-limiting conditions. The decrease in Zn availability increases fungicidal macrophage activity. Proteomics analysis during zinc deprivation at 24 and 48 h showed 265 proteins differentially expressed at 24 h and 68 at 48 h. Proteins related to energy production pathways, oxidative stress, and cell wall remodeling were regulated. The data also suggested that low metal availability increases the chitin and glycan content in fungal cell wall that results in smoother cell surface. Metal restriction also induces oxidative stress triggered, at least in part, by reduction in pyridoxin synthesis.


2001 ◽  
Vol 69 (11) ◽  
pp. 6874-6880 ◽  
Author(s):  
Osana C. Lima ◽  
Camila C. Figueiredo ◽  
José O. Previato ◽  
Lucia Mendonça-Previato ◽  
Verônica Morandi ◽  
...  

ABSTRACT Systemic sporotrichosis is an emerging infection potentially fatal for immunocompromised patients. Adhesion to extracellular matrix proteins is thought to play a crucial role in invasive fungal diseases. Here we report studies of the adhesion of Sporothrix schenckii to the extracellular protein fibronectin (Fn). Both yeast cells and conidia of S. schenckii were able to adhere to Fn as detected by enzyme-linked immunosorbent binding assays. Adhesion of yeast cells to Fn is dose dependent and saturable.S. schenckii adheres equally well to 40-kDa and 120-kDa Fn proteolytic fragments. While adhesion to Fn was increased by Ca2+, inhibition assays demonstrated that it was not RGD dependent. A carbohydrate-containing cell wall neutral fraction blocked up to 30% of the observed adherence for the yeast cells. The biochemical nature of this fraction suggests the participation of cell surface glycoconjugates in binding by their carbohydrate or peptide moieties. These results provide new data concerning S. schenckii adhesion mechanisms, which could be important in host-fungus interactions and the establishment of sporotrichosis.


2008 ◽  
Vol 2 ◽  
pp. LPI.S1000 ◽  
Author(s):  
Marcio L. Rodrigues ◽  
Leonardo Nimrichter ◽  
Debora L. Oliveira ◽  
Joshua D. Nosanchuk ◽  
Arturo Casadevall

Fungal cells are encaged in rigid, complex cell walls. Until recently, there was remarkably little information regarding the trans-fungal cell wall transfer of intracellular macromolecules to the extracellular space. Recently, several studies have begun to elucidate the mechanisms that fungal cells utilize to secrete a wide variety of macromolecules through the cell wall. The combined use of transmission electron microscopy, serology, biochemistry, proteomics and lipidomics have revealed that the fungal pathogens Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida parapsilosis and Sporothrix schenckii, as well as the model yeast Saccharomyces cerevisiae, each produces extracellular vesicles that carry lipids, proteins, polysaccharides and pigment-like structures of unquestionable biological significance. Compositional analysis of the C. neoformans and H. capsulatum extracellular vesicles suggests that they may function as ‘virulence bags’, with the potential to modulate the host-pathogen interaction in favor of the fungus. The cellular origin of the extracellular vesicles remains unknown, but morphological and biochemical features indicate that they are similar to the well-described mammalian exosomes.


2010 ◽  
Vol 10 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Jessica A. Edwards ◽  
Elizabeth A. Alore ◽  
Chad A. Rappleye

ABSTRACTHistoplasma capsulatumstrains can be classified into two chemotypes based on cell wall composition. The cell wall of chemotype II yeast contains a layer of α-(1,3)-glucan that masks immunostimulatory β-(1,3)-glucans from detection by the Dectin-1 receptor on host phagocytes. This α-(1,3)-glucan cell wall component is essential for chemotype IIHistoplasmavirulence. In contrast, chemotype I yeast cells lack α-(1,3)-glucanin vitro, yet they remain fully virulentin vivo. Analysis of the chemotype I α-glucan synthase (AGS1) locus revealed a 2.7-kb insertion in the promoter region that diminishesAGS1expression. Nonetheless,AGS1mRNA can be detected during respiratory infection with chemotype I yeast, suggesting that α-(1,3)-glucan could be produced duringin vivogrowth despite its absencein vitro. To directly test whetherAGS1contributes to chemotype I strain virulence, we preventedAGS1function by RNA interference and by insertional mutation. Loss ofAGS1function in chemotype I does not impair the cytotoxicity ofags1(−) mutant yeast to cultured macrophages, nor does it affect the intracellular growth of yeast. In a murine model of histoplasmosis, theags1(−) chemotype I mutant strains show no defect in lung infection or in extrapulmonary dissemination. Together, these studies demonstrate thatAGS1expression is dispensable for chemotype I yeast virulence, in contrast to the case for chemotype II yeast. Despite the absence of cell wall α-(1,3)-glucan, chemotype I yeast can avoid detection by Dectin-1 in a growth stage-dependent manner. This suggests the production of a uniqueHistoplasmachemotype I factor that, at least partially, circumvents the α-(1,3)-glucan requirement for yeast virulence.


2007 ◽  
Vol 75 (6) ◽  
pp. 2811-2817 ◽  
Author(s):  
Megan L. Bohse ◽  
Jon P. Woods

ABSTRACT The YPS3 gene of Histoplasma capsulatum encodes a protein that is both surface localized in the cell wall of H. capsulatum and released into the culture medium. This protein is produced only during the pathogenic yeast phase of infection and is also expressed differentially in H. capsulatum strains of different virulence levels. In this study, we silenced the YPS3 transcript by using an interfering-RNA strategy and examined the silenced mutants for phenotypic differences in vitro and during infection. The mutants showed no growth defect during in vitro culture in a defined medium at 37°C and appeared to have normal virulence in a RAW 264.7 murine macrophage-like cell line. In a C57BL/6 mouse model of infection, however, the mutants caused significantly decreased fungal burdens, particularly in the peripheral phagocyte-rich tissues of livers and spleens. This defect in organ colonization was evident within 3 days of infection; however, it appeared to be exacerbated at later time points.


1998 ◽  
Vol 95 (16) ◽  
pp. 9161-9166 ◽  
Author(s):  
Frans Hochstenbach ◽  
Frans M. Klis ◽  
Herman van den Ende ◽  
Elly van Donselaar ◽  
Peter J. Peters ◽  
...  

The cell wall protects fungi against lysis and determines their cell shape. Alpha-glucan is a major carbohydrate component of the fungal cell wall, but its function is unknown and its synthase has remained elusive. Here, we describe a fission yeast gene,ags1+, which encodes a putative alpha-glucan synthase. In contrast to the structure of other carbohydrate polymer synthases, the predicted Ags1 protein consists of two probable catalytic domains for alpha-glucan assembly, namely an intracellular domain for alpha-glucan synthesis and an extracellular domain speculated to cross-link or remodel alpha-glucan. In addition, the predicted Ags1 protein contains a multipass transmembrane domain that might contribute to transport of alpha-glucan across the membrane. Loss of Ags1p function in a temperature-sensitive mutant results in cell lysis, whereas mutant cells grown at the semipermissive temperature contain decreased levels of cell wall alpha-glucan and fail to maintain rod shapes, causing rounding of the cells. These findings demonstrate that alpha-glucan is essential for fission yeast morphogenesis.


2007 ◽  
Vol 6 (4) ◽  
pp. 609-615 ◽  
Author(s):  
Megan L. Bohse ◽  
Jon P. Woods

ABSTRACT The YPS3 locus of the dimorphic fungus Histoplasma capsulatum encodes a secreted and surface-localized protein specific to the pathogenic yeast phase. In this study we examined this locus in 32 H. capsulatum strains and variants. Although protein production is limited to a select group of strains, the North American restriction fragment length polymorphism class 2/NAm 2 isolates, the locus was present in all the strains we examined. The YPS3 gene is well conserved in its 5′ and 3′ regions but displays an intragenic hypervariable region of tandem repeats that fluctuates in size between strains. This feature is similar to that seen with genes encoding several cell surface proteins in other fungi.


2021 ◽  
Author(s):  
Leo D. Bemena ◽  
Kyunghun Min ◽  
James B. Konopka ◽  
Aaron M. Neiman

AbstractThe polysaccharide chitosan is found in the cell wall of specific cell types in a variety of fungal species where it contributes to stress resistance, or in pathogenic fungi, virulence. Under certain growth conditions, the pathogenic yeast Candida dubliniensis forms a cell type termed a chlamydosospore, which has an additional internal layer in its cell wall as compared to hyphal or yeast cell types. We report that this internal layer of the chlamydospore wall is rich in chitosan. The ascospore wall of Saccharomyces cerevisiae also has a distinct chitosan layer. As in S. cerevisiae, formation of the chitosan layer in the C. dubliniensis wall requires the chitin synthase CHS3 and the chitin deacetylase CDA2. In addition, three lipid droplet-localized proteins Rrt8, Srt1, and Mum3, identified in S. cerevisiae as important for chitosan layer assembly in the ascospore wall, are required for the formation of the chitosan layer of the chlamydospore wall in C. dubliniensis. These results reveal that a conserved machinery is required for the synthesis of a distinct chitosan layer in the walls of these two yeasts and may be generally important for incorporation of chitosan into fungal walls.ImportanceThe cell wall is the interface between the fungal cell and its environment and disruption of cell wall assembly is an effective strategy for antifungal therapies. Therefore, a detailed understanding of how cell walls form is critical to identify potential drug targets and develop therapeutic strategies. This work shows that a set of genes required for assembly of a chitosan layer in the cell wall of S. cerevisiae is also necessary for chitosan formation in a different cell type in a different yeast, C. dubliniensis. Because chitosan incorporation into the cell wall can be important for virulence, the conservation of this pathway suggests possible new targets for antifungals aimed at disrupting cell wall function.


Sign in / Sign up

Export Citation Format

Share Document