scholarly journals Four-Component Staphylococcus aureus Vaccine 4C-Staph Enhances Fcγ Receptor Expression in Neutrophils and Monocytes and Mitigates S. aureus Infection in Neutropenic Mice

2015 ◽  
Vol 83 (8) ◽  
pp. 3157-3163 ◽  
Author(s):  
Antonina Torre ◽  
Marta Bacconi ◽  
Chiara Sammicheli ◽  
Bruno Galletti ◽  
Donatello Laera ◽  
...  

Staphylococcus aureusis a human bacterial pathogen causing a variety of diseases. The occurrence of multidrug-resistant strains ofStaphylococcus aureusunderlines the need for a vaccine. Defining immune correlates of protection may support the design of an effective vaccine. We used a murineStaphylococcus aureusinfection model, in which bacteria were inoculated in an air pouch generated on the back of the animal. Analysis of the air-pouch content in mice immunized or not with an adjuvanted multiantigen vaccine formulation, four-componentS. aureusvaccine (4C-Staph), prior to infection allowed us to measure bacteria, cytokines, and 4C-Staph-specific antibodies and to analyze host immune cells recruited to the infection site. Immunization with 4C-Staph resulted in accumulation of antigen-specific antibodies in the pouch and mitigated the infection. Neutrophils were the most abundant cells in the pouch, and they showed the upregulation of Fcγ receptor (FcγR) following immunization with 4C-Staph. Reduction of the infection was also obtained in mice immunized with 4C-Staph and depleted of neutrophils; these mice showed an increase in monocytes and macrophages. Upregulation of the FcγR and the presence of antigen-specific antibodies induced by immunization with 4C-Staph may contribute to increase bacterial opsonophagocytosis. Protection in neutropenic mice indicated that an effective vaccine could activate alternative protection mechanisms compensating for neutropenia, a condition often occurring inS. aureus-infected patients.

mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Jian Deng ◽  
Xiaolei Wang ◽  
Bao-Zhong Zhang ◽  
Peng Gao ◽  
Qiubin Lin ◽  
...  

ABSTRACT The demand for a prophylactic vaccine against methicillin-resistant Staphylococcus aureus (MRSA) has motivated numerous dedicated research groups to design and develop such a vaccine. In this study, we have developed a multivalent vaccine, Sta-V5, composed of five conserved antigens involved in three important virulence mechanisms. This prototype vaccine conferred up to 100% protection against multiple epidemiologically relevant S. aureus isolates in five different murine disease models. The vaccine not only elicits functional antibodies that mediate opsonophagocytic killing of S. aureus but also mounts robust antigen-specific T-cell responses. In addition, our data implied that γδ T cells contribute to the protection induced by Sta-V5 in a murine skin infection model. IMPORTANCE Staphylococcus aureus infections, especially MRSA infections, are becoming a major global health issue and are resulting in mortality rates that are increasing every year. However, an effective vaccine is lacking due to the complexity of the infection process of S. aureus. In this study, we found that the addition of two novel protein components to three well-studied vaccine candidates significantly improved the efficacy of the combined vaccine. Furthermore, the five-component vaccine not only elicits a robust antibody response but also induces cytokine secretion by T cells, making it a promising vaccine candidate to fill the void.


2013 ◽  
Vol 57 (7) ◽  
pp. 3240-3249 ◽  
Author(s):  
Christopher R. E. McEvoy ◽  
Brian Tsuji ◽  
Wei Gao ◽  
Torsten Seemann ◽  
Jessica L. Porter ◽  
...  

ABSTRACTVancomycin-intermediateStaphylococcus aureus(VISA) strains often arise by mutations in the essential two-component regulatorwalKR; however their impact onwalKRfunction has not been definitively established. Here, we investigated 10 MRSA strains recovered serially after exposure of vancomycin-susceptibleS. aureus(VSSA) JKD6009 to simulated human vancomycin dosing regimens (500 mg to 4,000 mg every 12 h) using a 10-day hollow fiber infection model. After continued exposure to the vancomycin regimens, two isolates displayed reduced susceptibility to both vancomycin and daptomycin, developing independent IS256insertions in thewalKR5′ untranslated region (5′ UTR). Quantitative reverse transcription-PCR (RT-PCR) revealed a 50% reduction inwalKRgene expression in the IS256mutants compared to the VSSA parent. Green fluorescent protein (GFP) reporter analysis, promoter mapping, and site-directed mutagenesis confirmed these findings and showed that the IS256insertions had replaced two SigA-likewalKRpromoters with weaker, hybrid promoters. Removal of IS256reverted the phenotype to VSSA, showing that reduced expression of WalKR did induce the VISA phenotype. Analysis of selected WalKR-regulated autolysins revealed upregulation ofssaAbut no change in expression ofsakandsceDin both IS256mutants. Whole-genome sequencing of the two mutants revealed an additional IS256insertion withinagrCfor one mutant, and we confirmed that this mutation abolishedagrfunction. These data provide the first substantial analysis ofwalKRpromoter function and show that prolonged vancomycin exposure can result in VISA through an IS256-mediated reduction inwalKRexpression; however, the mechanisms by which this occurs remain to be determined.


2014 ◽  
Vol 83 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
Julienne C. Kaiser ◽  
Sameha Omer ◽  
Jessica R. Sheldon ◽  
Ian Welch ◽  
David E. Heinrichs

The branched-chain amino acids (BCAAs; Ile, Leu, and Val) not only are important nutrients for the growth ofStaphylococcus aureusbut also are corepressors for CodY, which regulates virulence gene expression, implicating BCAAs as an important link between the metabolic state of the cell and virulence. BCAAs are either synthesized intracellularly or acquired from the environment.S. aureusencodes three putative BCAA transporters, designated BrnQ1, BrnQ2, and BrnQ3; their functions have not yet been formally tested. In this study, we mutated all threebrnQparalogs so as to characterize their substrate specificities and their roles in growthin vitroandin vivo. We demonstrated that in the community-associated, methicillin-resistantS. aureus(CA-MRSA) strain USA300, BrnQ1 is involved in uptake of all three BCAAs, BrnQ2 transports Ile, and BrnQ3 does not have a significant role in BCAA transport under the conditions tested. Of the three, only BrnQ1 is essential for USA300 to grow in a chemically defined medium that is limited for Leu or Val. Interestingly, we observed that abrnQ2mutant grew better than USA300 in media limited for Leu and Val, owing to the fact that this mutation leads to overexpression ofbrnQ1. In a murine infection model, thebrnQ1mutant was attenuated, but in contrast,brnQ2mutants had significantly increased virulence compared to that of USA300, a phenotype we suggest is at least partially linked to enhancedin vivoscavenging of Leu and Val through BrnQ1. These data uncover a hitherto-undiscovered connection between nutrient acquisition and virulence in CA-MRSA.


2015 ◽  
Vol 59 (4) ◽  
pp. 2029-2036 ◽  
Author(s):  
Florent Valour ◽  
Sophie Trouillet-Assant ◽  
Natacha Riffard ◽  
Jason Tasse ◽  
Sacha Flammier ◽  
...  

ABSTRACTAlthoughStaphylococcus aureuspersistence in osteoblasts, partly as small-colony variants (SCVs), can contribute to bone and joint infection (BJI) relapses, the intracellular activity of antimicrobials is not currently considered in the choice of treatment strategies for BJI. Here, antistaphylococcal antimicrobials were evaluated for their intraosteoblastic activity and their impact on the intracellular emergence of SCVs in anex vivoosteoblast infection model. Osteoblastic MG63 cells were infected for 2 h with HG001S. aureus. After killing the remaining extracellular bacteria with lysostaphin, infected cells were incubated for 24 h with antimicrobials at the intraosseous concentrations reached with standard therapeutic doses. Intracellular bacteria and SCVs were then quantified by plating cell lysates. A bactericidal effect was observed with fosfomycin, linezolid, tigecycline, oxacillin, rifampin, ofloxacin, and clindamycin, with reductions in the intracellular inocula of −2.5, −3.1, −3.9, −4.2, −4.9, −4.9, and −5.2 log10CFU/100,000 cells, respectively (P< 10−4). Conversely, a bacteriostatic effect was observed with ceftaroline and teicoplanin, whereas vancomycin and daptomycin had no significant impact on intracellular bacterial growth. Ofloxacin, daptomycin, and vancomycin significantly limited intracellular SCV emergence. Overall, ofloxacin was the only molecule to combine an excellent intracellular activity while limiting the emergence of SCVs. These data provide a basis for refining the choice of antibiotics to prioritise in the management of BJI, justifying the combination of a fluoroquinolone for its intracellular activity with an anti-biofilm molecule, such as rifampin.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Melanie Roch ◽  
Maria Celeste Varela ◽  
Agustina Taglialegna ◽  
Warren E. Rose ◽  
Adriana E. Rosato

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) acquisition in cystic fibrosis (CF) patients confers a clinical outcome worse than that in non-CF patients with an increased rate of declined lung function. Telavancin, an approved lipoglycopeptide used to treat infections due to S. aureus, has a dual mode of action causing inhibition of peptidoglycan synthesis and membrane depolarization. MRSA infections in CF patients remain an important problem with no foreseeable decline in prevalence rates. Although telavancin is currently in clinical use for the treatment of complicated skin infections and hospital-acquired pneumonia, the activity against S. aureus infections in CF patients has not been investigated. In this work, we studied the activity of telavancin against CF patient-derived S. aureus strains collected from geographically diverse CF centers in the United States. We found that the telavancin MIC90 was 0.06 μg/ml, 8-fold lower than the ceftaroline or daptomycin MIC90 and 25-fold lower than the linezolid and vancomycin MIC90. We demonstrate that telavancin at serum free concentrations has rapid bactericidal activity, with a decrease of more than 3 log10 CFU/ml being achieved during the first 4 to 6 h of treatment, performing better in this assay than vancomycin and ceftaroline, including against S. aureus strains resistant to ceftaroline. Telavancin resistance was infrequent (0.3%), although we found that it can occur in vitro in both CF- and non-CF patient-derived S. aureus strains by progressive passages with subinhibitory concentrations. Genetic analysis of telavancin-resistant in vitro mutants showed gene polymorphisms in cell wall and virulence genes and increased survival in a Galleria mellonella infection model. Thus, we conclude that telavancin represents a promising therapeutic option for infections in CF patients with potent in vitro activity and a low resistance development potential.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Evelien T. M. Berends ◽  
Xuhui Zheng ◽  
Erin E. Zwack ◽  
Mickaël M. Ménager ◽  
Michael Cammer ◽  
...  

ABSTRACTStaphylococcus aureusis a human pathogen responsible for high morbidity and mortality worldwide. Recurrent infections with this bacterium are common, suggesting thatS. aureusthwarts the development of sterilizing immunity.S. aureusstrains that cause disease in humans produce up to five different bicomponent toxins (leukocidins) that target and lyse neutrophils, innate immune cells that represent the first line of defense againstS. aureusinfections. However, little is known about the role of leukocidins in blunting adaptive immunity. Here, we explored the effects of leukocidins on human dendritic cells (DCs), antigen-presenting cells required for the development of adaptive immunity. Using anex vivoinfection model of primary human monocyte-derived dendritic cells, we found thatS. aureus, including strains from different clonal complexes and drug resistance profiles, effectively kills DCs despite efficient phagocytosis. Although all purified leukocidins could kill DCs, infections with live bacteria revealed thatS. aureustargets and kills DCs primarily via the activity of leukocidin LukAB. Moreover, using coculture experiments performed with DCs and autologous CD4+T lymphocytes, we found that LukAB inhibits DC-mediated activation and proliferation of primary human T cells. Taken together, the data determined in the study reveal a novel immunosuppressive strategy ofS. aureuswhereby the bacterium blunts the development of adaptive immunity via LukAB-mediated injury of DCs.IMPORTANCEAntigen-presenting cells such as dendritic cells (DCs) fulfill an indispensable role in the development of adaptive immunity by producing proinflammatory cytokines and presenting microbial antigens to lymphocytes to trigger a faster, specific, and long-lasting immune response. Here, we studied the effect ofStaphylococcus aureustoxins on human DCs. We discovered that the leukocidin LukAB hinders the development of adaptive immunity by targeting human DCs. The ability ofS. aureusto blunt the function of DCs could help explain the high frequency of recurrentS. aureusinfections. Taken together, the results from this study suggest that therapeutically targeting theS. aureusleukocidins may boost effective innate and adaptive immune responses by protecting innate leukocytes, enabling proper antigen presentation and T cell activation.


2019 ◽  
Vol 201 (15) ◽  
Author(s):  
Ameya A. Mashruwala ◽  
Brian J. Eilers ◽  
Amanda L. Fuchs ◽  
Javiera Norambuena ◽  
Carly A. Earle ◽  
...  

ABSTRACTThestaphylococcalrespiratoryregulator (SrrAB) modulates energy metabolism inStaphylococcus aureus. Studies have suggested that regulated protein catabolism facilitates energy homeostasis. Regulated proteolysis inS. aureusis achieved through protein complexes composed of a peptidase (ClpQ or ClpP) in association with an AAA+family ATPase (typically, ClpC or ClpX). In the present report, we tested the hypothesis that SrrAB regulates a Clp complex to facilitate energy homeostasis inS. aureus. Strains deficient in one or more Clp complexes were attenuated for growth in the presence of puromycin, which causes enrichment of misfolded proteins. A ΔsrrABstrain had increased sensitivity to puromycin. Epistasis experiments suggested that the puromycin sensitivity phenotype of the ΔsrrABstrain was a result of decreased ClpC activity. Consistent with this, transcriptional activity ofclpCwas decreased in the ΔsrrABmutant, and overexpression ofclpCsuppressed the puromycin sensitivity of the ΔsrrABstrain. We also found that ClpC positively influenced respiration and that it did so upon association with ClpP. In contrast, ClpC limited fermentative growth, while ClpP was required for optimal fermentative growth. Metabolomics studies demonstrated that intracellular metabolic profiles of the ΔclpCand ΔsrrABmutants were distinct from those of the wild-type strain, supporting the notion that both ClpC and SrrAB affect central metabolism. We propose a model wherein SrrAB regulates energy homeostasis, in part, via modulation of regulated proteolysis.IMPORTANCEOxygen is used as a substrate to derive energy by the bacterial pathogenStaphylococcus aureusduring infection; however,S. aureuscan also grow fermentatively in the absence of oxygen. To successfully cause infection,S. aureusmust tailor its metabolism to take advantage of respiratory activity. Different proteins are required for growth in the presence or absence of oxygen; therefore, when cells transition between these conditions, several proteins would be expected to become unnecessary. In this report, we show that regulated proteolysis is used to modulate energy metabolism inS. aureus. We report that the ClpCP protein complex is involved in specifically modulating aerobic respiratory growth but is dispensable for fermentative growth.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Olivia A. Todd ◽  
Mairi C. Noverr ◽  
Brian M. Peters

ABSTRACT Candida albicans and Staphylococcus aureus are common causes of nosocomial infections with severe morbidity and mortality. Murine polymicrobial intra-abdominal infection (IAI) with C. albicans and S. aureus results in acute mortality dependent on the secreted cytolytic effector alpha-toxin. Here, we confirmed that alpha-toxin is elevated during polymicrobial growth compared to monomicrobial growth in vitro. Therefore, this study sought to unravel the mechanism by which C. albicans drives enhanced staphylococcal alpha-toxin production. Using a combination of functional and genetic approaches, we determined that an intact agr quorum sensing regulon is necessary for enhanced alpha-toxin production during coculture and that a secreted candidal factor likely is not implicated in elevating agr activation. As the agr system is pH sensitive, we observed that C. albicans raises the pH during polymicrobial growth and that this correlates with increased agr activity and alpha-toxin production. Modulation of the pH could predictably attenuate or activate agr activity during coculture. By using a C. albicans mutant deficient in alkalinization (stp2Δ/Δ), we confirmed that modulation of the extracellular pH by C. albicans can drive agr expression and toxin production. Additionally, the use of various Candida species (C. glabrata, C. dubliniensis, C. tropicalis, C. parapsilosis, and C. krusei) demonstrated that those capable of raising the extracellular pH correlated with elevated agr activity and alpha-toxin production during coculture. Overall, we demonstrate that alkalinization of the extracellular pH by the Candida species leads to sustained activation of the staphylococcal agr system. IMPORTANCE Candida albicans and Staphylococcus aureus are commonly coisolated from central venous catheters and deep-seated infections, including intra-abdominal sepsis. Thus, they represent a significant cause of nosocomial morbidity and mortality. Yet how these organisms behave in the context of polymicrobial growth remains poorly understood. In this work, we set out to determine the mechanism by which activation of the staphylococcal agr quorum sensing system and production of its major virulence effector alpha-toxin is enhanced during coculture with C. albicans. Surprisingly, we likely ruled out that a secreted candidal factor drives this process. Instead, we demonstrated that alkalinization of the extracellular milieu by C. albicans and other Candida species correlated with elevated agr activity. Thus, we propose a mechanism where modulation of the extracellular pH by fungal opportunists can indirectly alter virulence of a bacterial pathogen. Uncovering molecular events that drive interkingdom pathogenicity mechanisms may enhance surveillance and treatment for devastating polymicrobial infections.


2019 ◽  
Vol 8 (28) ◽  
Author(s):  
Jo-Ann McClure ◽  
Steven M. Shideler ◽  
Kunyan Zhang

Staphylococcus aureus multilocus sequence type 398 (ST398) is responsible for an increasing number of severe infections in humans. There are no reports detailing if all ST398 strains are equally virulent. We present the genome sequence of the moderate-virulence ST398 methicillin-susceptible Staphylococcus aureus strain GD1108, determined in a Caenorhabditis elegans infection model, to reveal the ST398 sublineage virulence.


2011 ◽  
Vol 56 (1) ◽  
pp. 243-247 ◽  
Author(s):  
Carlos A. Rodriguez ◽  
Maria Agudelo ◽  
Andres F. Zuluaga ◽  
Omar Vesga

ABSTRACTPrevious studies have shown that “bioequivalent” generic products of vancomycin are less effectivein vivoagainstStaphylococcus aureusthan the innovator compound. Considering that suboptimal bactericidal effect has been associated with emergence of resistance, we aimed to assessin vivothe impact of exposure to innovator and generic products of vancomycin onS. aureussusceptibility. A clinical methicillin-resistantS. aureus(MRSA) strain from a liver transplant patient with persistent bacteremia was used for which MIC, minimum bactericidal concentration (MBC), and autolytic properties were determined. Susceptibility was also assessed by determining a population analysis profile (PAP) with vancomycin concentrations from 0 to 5 mg/liter. ICR neutropenic mice were inoculated in each thigh with ∼7.0 log10CFU. Treatment with the different vancomycin products (innovator and three generics; 1,200 mg/kg of body weight/day every 3 h) started 2 h later while the control group received sterile saline. After 24 h, mice were euthanized, and the thigh homogenates were plated. Recovered colonies were reinoculated to new groups of animals, and the exposure-recovery process was repeated until 12 cycles were completed. The evolution of resistance was assessed by PAP after cycles 5, 10, 11, and 12. The initial isolate displayed reduced autolysis and higher resistance frequencies thanS. aureusATCC 29213 but without vancomycin-intermediateS. aureus(VISA) subpopulations. After 12 cycles, innovator vancomycin had significantly reduced resistant subpopulations at 1, 2, and 3 mg/liter, while the generic products had enriched them progressively by orders of magnitude. The great capacity of generic vancomycin to select for less susceptible organisms raises concerns about the role of therapeutic inequivalence of any antimicrobial on the epidemiology of resistance worldwide.


Sign in / Sign up

Export Citation Format

Share Document