scholarly journals Inhibition of Host Cell Lysosome Spreading by Trypanosoma cruzi Metacyclic Stage-Specific Surface Molecule gp90 Downregulates Parasite Invasion

2017 ◽  
Vol 85 (9) ◽  
Author(s):  
João Paulo Ferreira Rodrigues ◽  
Guilherme Hideki Takahashi Sant'ana ◽  
Maria Aparecida Juliano ◽  
Nobuko Yoshida

ABSTRACT Successful infection by Trypanosoma cruzi, the agent of Chagas' disease, is critically dependent on host cell invasion by metacyclic trypomastigote (MT) forms. Two main metacyclic stage-specific surface molecules, gp82 and gp90, play determinant roles in target cell invasion in vitro and in oral T. cruzi infection in mice. The structure and properties of gp82, which is highly conserved among T. cruzi strains, are well known. Information on gp90 is still rather sparse. Here, we attempted to fill that gap. gp90, purified from poorly invasive G strain MT and expressing gp90 at high levels, inhibited HeLa cell lysosome spreading and the gp82-mediated internalization of a highly invasive CL strain MT expressing low levels of a diverse gp90 molecule. A recombinant protein containing the conserved C-terminal domain of gp90 exhibited the same properties as the native G strain gp90: it counteracted the host cell lysosome spreading induced by recombinant gp82 and exhibited an inhibitory effect on HeLa cell invasion by CL strain MT. Assays to identify the gp90 sequence associated with the property of downregulating MT invasion, using synthetic peptides spanning the gp90 C-terminal domain, revealed the sequence GVLYTADKEW. These data, plus the findings that lysosome spreading was induced upon HeLa cell interaction with CL strain MT, but not with G strain MT, and that in mixed infection CL strain MT internalization was inhibited by G strain MT, suggest that the inhibition of target cell lysosome spreading is the mechanism by which the gp90 molecule exerts its downregulatory role.

mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Jennifer Timm ◽  
Maria Valente ◽  
Daniel García-Caballero ◽  
Keith S. Wilson ◽  
Dolores González-Pacanowska

ABSTRACT Leucine aminopeptidases (LAPs) catalyze the hydrolysis of the N-terminal amino acid of peptides and are considered potential drug targets. They are involved in multiple functions ranging from host cell invasion and provision of essential amino acids to site-specific homologous recombination and transcription regulation. In kinetoplastid parasites, there are at least three distinct LAPs. The availability of the crystal structures provides important information for drug design. Here we report the structure of the acidic LAPs from three kinetoplastids in complex with different inhibitors and explore their role in Trypanosoma brucei survival under various nutrient conditions. Importantly, the acidic LAP is dispensable for growth both in vitro and in vivo, an observation that questions its use as a specific drug target. While LAP-A is not essential, leucine depletion and subcellular localization studies performed under starvation conditions suggest a possible function of LAP-A in the response to nutrient restriction. Leucine aminopeptidase (LAP) is found in all kingdoms of life and catalyzes the metal-dependent hydrolysis of the N-terminal amino acid residue of peptide or amino acyl substrates. LAPs have been shown to participate in the N-terminal processing of certain proteins in mammalian cells and in homologous recombination and transcription regulation in bacteria, while in parasites, they are involved in host cell invasion and provision of essential amino acids for growth. The enzyme is essential for survival in Plasmodium falciparum, where its drug target potential has been suggested. We report here the X-ray structures of three kinetoplastid acidic LAPs (LAP-As from Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major) which were solved in the metal-free and unliganded forms, as well as in a number of ligand complexes, providing insight into ligand binding, metal ion requirements, and oligomeric state. In addition, we analyzed mutant cells defective in LAP-A in Trypanosoma brucei, strongly suggesting that the enzyme is not required for the growth of this parasite either in vitro or in vivo. In procyclic cells, LAP-A was equally distributed throughout the cytoplasm, yet upon starvation, it relocalizes in particles that concentrate in the perinuclear region. Overexpression of the enzyme conferred a growth advantage when parasites were grown in leucine-deficient medium. Overall, the results suggest that in T. brucei, LAP-A may participate in protein degradation associated with nutrient depletion. IMPORTANCE Leucine aminopeptidases (LAPs) catalyze the hydrolysis of the N-terminal amino acid of peptides and are considered potential drug targets. They are involved in multiple functions ranging from host cell invasion and provision of essential amino acids to site-specific homologous recombination and transcription regulation. In kinetoplastid parasites, there are at least three distinct LAPs. The availability of the crystal structures provides important information for drug design. Here we report the structure of the acidic LAPs from three kinetoplastids in complex with different inhibitors and explore their role in Trypanosoma brucei survival under various nutrient conditions. Importantly, the acidic LAP is dispensable for growth both in vitro and in vivo, an observation that questions its use as a specific drug target. While LAP-A is not essential, leucine depletion and subcellular localization studies performed under starvation conditions suggest a possible function of LAP-A in the response to nutrient restriction.


2003 ◽  
Vol 71 (11) ◽  
pp. 6184-6191 ◽  
Author(s):  
Mauro Cortez ◽  
Ivan Neira ◽  
Daniele Ferreira ◽  
Alejandro O. Luquetti ◽  
Anis Rassi ◽  
...  

ABSTRACT Trypanosoma cruzi metacyclic trypomastigotes invade and replicate in the gastric mucosal epithelium after oral infection. In this study we analyzed the process of infection by T. cruzi isolates deficient in the expression of gp82, the metacyclic stage-specific surface glycoprotein implicated in target cell entry in vitro and in promoting mucosal infection in mice after oral challenge. Mice infected by the oral route with metacyclic forms of gp82-deficient isolate 569 or 588 developed patent parasitemia but at greatly reduced levels compared to those infected with the gp82-expressing isolate CL. Metacyclic forms of both isolates expressed gp30, a surface glycoprotein detectable by monoclonal antibody (MAb) 3F6 directed to gp82. Otherwise, the gp82-deficient isolates displayed a surface profile similar to that of the CL isolate and also entered epithelial HeLa cells in a manner inhibitable by MAb 3F6 and dependent on the parasite signal transduction that involved the activation of protein tyrosine kinase and Ca2+ mobilization from thapsigargin-sensitive stores. Like gp82, gp30 triggered the host cell Ca2+ response required for parasite internalization. Purified gp30 and the recombinant gp82 inhibited HeLa cell invasion of metacyclic forms of isolates 569 and 588 by ∼90 and ∼70%, respectively. A cell invasion assay performed in the presence of gastric mucin, mimicking the in vivo infection, showed an inhibition of 70 to 75% in the internalization of gp82-deficient isolates but not of the CL isolate. The recombinant gp82 exhibited an adhesive capacity toward gastric mucin much higher than that of gp30. Taken together, our findings indicate that target cell entry of metacyclic trypomastigotes can be mediated either by gp82 or gp30 but that efficient mucosal infection depends on the expression of gp82.


mBio ◽  
2021 ◽  
Author(s):  
Eden R. Ferreira ◽  
Alexis Bonfim-Melo ◽  
Barbara A. Burleigh ◽  
Jaime A. Costales ◽  
Kevin M. Tyler ◽  
...  

Understanding how Trypanosoma cruzi interacts with host cells has been transformed by high-quality studies that have examined in detail the mechanisms of T. cruzi host cell invasion. In contrast, little is known about the latter stages of the parasite’s lytic cycle: how parasites egress and thereby sustain round after round of infection.


1992 ◽  
Vol 52 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Maria Nazareth L. Meirelles ◽  
Luiz Juliano ◽  
Euridice Carmona ◽  
Suelen G. Silva ◽  
Elizabeth M. Costa ◽  
...  

2014 ◽  
Vol 82 (12) ◽  
pp. 5166-5174 ◽  
Author(s):  
Fernando Yukio Maeda ◽  
Cristian Cortez ◽  
Mario Augusto Izidoro ◽  
Luiz Juliano ◽  
Nobuko Yoshida

ABSTRACTTrypanosoma cruzi, the agent of Chagas disease, binds to diverse extracellular matrix proteins. Such an ability prevails in the parasite forms that circulate in the bloodstream and contributes to host cell invasion. Whether this also applies to the insect-stage metacyclic trypomastigotes, the developmental forms that initiate infection in the mammalian host, is not clear. UsingT. cruziCL strain metacyclic forms, we investigated whether fibronectin bound to the parasites and affected target cell invasion. Fibronectin present in cell culture medium bound to metacyclic forms and was digested by cruzipain, the majorT. cruzicysteine proteinase. G strain, with negligible cruzipain activity, displayed a minimal fibronectin-degrading effect. Binding to fibronectin was mediated by gp82, the metacyclic stage-specific surface molecule implicated in parasite internalization. When exogenous fibronectin was present at concentrations higher than cruzipain can properly digest, or fibronectin expression was stimulated by treatment of epithelial HeLa cells with transforming growth factor beta, the parasite invasion was reduced. Treatment of HeLa cells with purified recombinant cruzipain increased parasite internalization, whereas the treatment of parasites with cysteine proteinase inhibitor had the opposite effect. Metacyclic trypomastigote entry into HeLa cells was not affected by anti-β1 integrin antibody but was inhibited by anti-fibronectin antibody. Overall, our results have indicated that the cysteine proteinase ofT. cruzimetacyclic forms, through its fibronectin-degrading activity, is implicated in host cell invasion.


2011 ◽  
Vol 79 (10) ◽  
pp. 4081-4087 ◽  
Author(s):  
Craig Weinkauf ◽  
Ryan Salvador ◽  
Mercio PereiraPerrin

ABSTRACTTrypanosoma cruzi, the agent of Chagas' disease, infects a variety of mammalian cells in a process that includes multiple cycles of intracellular division and differentiation starting with host receptor recognition by a parasite ligand(s). Earlier work in our laboratory showed that the neurotrophin-3 (NT-3) receptor TrkC is activated byT. cruzisurfacetrans-sialidase, also known as parasite-derived neurotrophic factor (PDNF). However, it has remained unclear whether TrkC is used byT. cruzito enter host cells. Here, we show that a neuronal cell line (PC12-NNR5) relatively resistant toT. cruzibecame highly susceptible to infection when overexpressing human TrkC but not human TrkB. Furthermore,trkCtransfection conferred an ∼3.0-fold intracellular growth advantage. Sialylation-deficient Chinese hamster ovarian (CHO) epithelial cell lines Lec1 and Lec2 also became much more permissive toT. cruziafter transfection with thetrkCgene. Additionally, NT-3 specifically blockedT. cruziinfection of the TrkC-NNR5 transfectants and of naturally permissive TrkC-bearing Schwann cells and astrocytes, as did recombinant PDNF. Two specific inhibitors of Trk autophosphorylation (K252a and AG879) and inhibitors of Trk-induced MAPK/Erk (U0126) and Akt kinase (LY294002) signaling, but not an inhibitor of insulin-like growth factor 1 receptor, abrogated TrkC-mediated cell invasion. Antibody to TrkC blockedT. cruziinfection of the TrkC-NNR5 transfectants and of cells that naturally express TrkC. The TrkC antibody also significantly and specifically reduced cutaneous infection in a mouse model of acute Chagas' disease. TrkC is ubiquitously expressed in the peripheral and central nervous systems, and in nonneural cells infected byT. cruzi, including cardiac and gastrointestinal muscle cells. Thus, TrkC is implicated as a functional PDNF receptor in cell entry, independently of sialic acid recognition, mediating broadT. cruziinfection bothin vitroandin vivo.


2014 ◽  
Vol 58 (10) ◽  
pp. 6044-6055 ◽  
Author(s):  
Tanira M. Bastos ◽  
Marília I. F. Barbosa ◽  
Monize M. da Silva ◽  
José W. da C. Júnior ◽  
Cássio S. Meira ◽  
...  

ABSTRACTcis-[RuCl(NO2)(dppb)(5,5′-mebipy)] (complex 1),cis-[Ru(NO2)2(dppb)(5,5′-mebipy)] (complex 2),ct-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2(complex 3), andcc-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2(complex 4), where 5,5′-mebipy is 5,5′-dimethyl-2,2′-bipyridine and dppb is 1,4-bis(diphenylphosphino)butane, were synthesized and characterized. The structure of complex 2 was determined by X-ray crystallography. These complexes exhibited a higher anti-Trypanosoma cruziactivity than benznidazole, the current antiparasitic drug. Complex 3 was the most potent, displaying a 50% effective concentration (EC50) of 2.1 ± 0.6 μM against trypomastigotes and a 50% inhibitory concentration (IC50) of 1.3 ± 0.2 μM against amastigotes, while it displayed a 50% cytotoxic concentration (CC50) of 51.4 ± 0.2 μM in macrophages. It was observed that the nitrosyl complex 3, but not its analog lacking the nitrosyl group, releases nitric oxide into parasite cells. This release has a diminished effect on the trypanosomal protease cruzain but induces substantial parasite autophagy, which is followed by a series of irreversible morphological impairments to the parasites and finally results in cell death by necrosis. In infected mice, orally administered complex 3 (five times at a dose of 75 μmol/kg of body weight) reduced blood parasitemia and increased the survival rate of the mice. Combination index analysis of complex 3 indicated that itsin vitroactivity against trypomastigotes is synergic with benznidazole. In addition, drug combination enhanced efficacy in infected mice, suggesting that ruthenium-nitrosyl complexes are potential constituents for drug combinations.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1053
Author(s):  
Lidia Węglińska ◽  
Adrian Bekier ◽  
Katarzyna Dzitko ◽  
Barbara Pacholczyk-Sienicka ◽  
Łukasz Albrecht ◽  
...  

Congenital and acquired toxoplasmosis caused by the food- and water-born parasite Toxoplasma gondii (T. gondii) is one of the most prevalent zoonotic infection of global importance. T. gondii is an obligate intracellular parasite with limited capacity for extracellular survival, thus a successful, efficient and robust host cell invasion process is crucial for its survival, proliferation and transmission. In this study, we screened a series of novel 1,3,4-thiadiazole-2-halophenylamines functionalized at the C5 position with the imidazole ring (1b–12b) for their effects on T. gondii host cell invasion and proliferation. To achieve this goal, these compounds were initially subjected to in vitro assays to assess their cytotoxicity on human fibroblasts and then antiparasitic efficacy. Results showed that all of them compare favorably to control drugs sulfadiazine and trimethoprim in terms of T. gondii growth inhibition (IC50) and selectivity toward the parasite, expressed as selectivity index (SI). Subsequently, the most potent of them with meta-fluoro 2b, meta-chloro 5b, meta-bromo 8b, meta-iodo 11b and para-iodo 12b substitution were tested for their efficacy in inhibition of tachyzoites invasion and subsequent proliferation by direct action on established intracellular infection. All the compounds significantly inhibited the parasite invasion and intracellular proliferation via direct action on both tachyzoites and parasitophorous vacuoles formation. The most effective was para-iodo derivative 12b that caused reduction in the percentage of infected host cells by 44% and number of tachyzoites per vacuole by 93% compared to non-treated host cells. Collectively, these studies indicate that 1,3,4-thiadiazoles 1b–12b, especially 12b with IC50 of 4.70 µg/mL and SI of 20.89, could be considered as early hit compounds for future design and synthesis of anti-Toxoplasma agents that effectively and selectively block the invasion and subsequent proliferation of T. gondii into host cells.


2015 ◽  
Vol 197 (8) ◽  
pp. 1478-1491 ◽  
Author(s):  
Gustavo G. Caballero-Flores ◽  
Matthew A. Croxen ◽  
Verónica I. Martínez-Santos ◽  
B. Brett Finlay ◽  
José L. Puente

ABSTRACTThe Gram-negative enteric bacteriumCitrobacter rodentiumis a natural mouse pathogen that has been extensively used as a surrogate model for studying the human pathogens enteropathogenic and enterohemorrhagicEscherichia coli. All three pathogens produce similar attaching and effacing (A/E) lesions in the intestinal epithelium. During infection, these bacteria employ surface structures called fimbriae to adhere and colonize the host intestinal epithelium. ForC. rodentium, the roles of only a small number of its genome-carried fimbrial operons have been evaluated. Here, we report the identification of a novelC. rodentiumcolonization factor, calledgutcolonizationfimbria (Gcf), which is encoded by a chaperone-usher fimbrial operon. AgcfAmutant shows a severe colonization defect within the first 10 days of infection. Thegcfpromoter is not active inC. rodentiumunder severalin vitrogrowth conditions; however, it is readily expressed in aC. rodentiumΔhns1mutant lacking the closest ortholog of theEscherichia colihistone-like nucleoid structuring protein (H-NS) but not in mutants with deletion of the other four genes encoding H-NS homologs. H-NS binds to the regulatory region ofgcf, further supporting its direct role as a repressor of thegcfpromoter that starts transcription 158 bp upstream of the start codon of its first open reading frame. Thegcfoperon possesses interesting novel traits that open future opportunities to expand our knowledge of the structure, regulation, and function during infection of these important bacterial structures.IMPORTANCEFimbriae are surface bacterial structures implicated in a variety of biological processes. Some have been shown to play a critical role during host colonization and thus in disease. Pathogenic bacteria possess the genetic information for an assortment of fimbriae, but their function and regulation and the interplay between them have not been studied in detail. This work provides new insights into the function and regulation of a novel fimbria called Gcf that is important for early establishment of a successful infection byC. rodentiumin mice, despite being poorly expressed underin vitrogrowth conditions. This discovery offers an opportunity to better understand the individual role and the regulatory mechanisms controlling the expression of specific fimbrial operons that are critical during infection.


Sign in / Sign up

Export Citation Format

Share Document