scholarly journals Bacterial Protein Secretion Is Required for Priming of CD8+ T Cells Specific for the Mycobacterium tuberculosis Antigen CFP10

2008 ◽  
Vol 76 (9) ◽  
pp. 4199-4205 ◽  
Author(s):  
Joshua S. Woodworth ◽  
Sarah M. Fortune ◽  
Samuel M. Behar

ABSTRACT Mycobacterium tuberculosis infection elicits antigen-specific CD8+ T cells that are required to control disease. It is unknown how the major histocompatibility complex class I (MHC-I) pathway samples mycobacterial antigens. CFP10 and ESAT6 are important virulence factors secreted by M. tuberculosis, and they are immunodominant targets of the human and murine T-cell response. Here, we test the hypothesis that CFP10 secretion by M. tuberculosis is required for the priming of CD8+ T cells in vivo. Our results reveal an explicit dependence upon the bacterial secretion of the CFP10 antigen for the induction of antigen-specific CD8+ T cells in vivo. By using well-defined M. tuberculosis mutants and carefully controlling for virulence, we show that ESX-1 function is required for the priming of CD8+ T cells specific for CFP10. CD4+ and CD8+ T-cell responses to mycobacterial antigens secreted independently of ESX-1 were unaffected, suggesting that ESX-1-dependent phagosomal escape is not required for CD8+ T-cell priming during infection. We propose that the overrepresentation of secreted proteins as dominant targets of the CD8+ T-cell response during M. tuberculosis infection is a consequence of their preferential sampling by the MHC-I pathway. The implications of these findings should be considered in all models of antigen presentation during M. tuberculosis infection and in vaccine development.

2018 ◽  
Author(s):  
Jason Yang ◽  
Daniel Mott ◽  
Rujapak Sutiwisesak ◽  
Yu Jung Lu ◽  
Fiona Raso ◽  
...  

AbstractContainment ofMycobacterium tuberculosis(Mtb) infection requires T cell recognition of infected macrophages. Mtb has evolved to tolerate, evade, and subvert host immunity. Despite a vigorous and sustained CD8+T cell response during Mtb infection, CD8+T cells make limited contribution to protection. Here, we ask whether the ability of Mtb-specific T cells to restrict Mtb growth is related to their capacity to recognize Mtb-infected macrophages.We derived CD8+T cell lines that recognized the Mtb immunodominant epitope TB10.44-11and compared them to CD4+T cell lines that recognized Ag85b240-254 or ESAT63-17. While the CD4+T cells recognized Mtb-infected macrophages and inhibited Mtb growth in vitro, the TB10.4-specific CD8+T cells neither recognized Mtb-infected macrophages nor restricted Mtb growth. TB10.4-specific CD8+T cells recognized macrophages infected withListeria monocytogenesexpressing TB10.4. However, over-expression of TB10.4 in Mtb did not confer recognition by TB10.4-specific CD8+T cells. Importantly, CD8+T cells recognized macrophages pulsed with irradiated Mtb, indicating that macrophages can efficiently cross-present the TB10.4 protein and raising the possibility that viable bacilli might suppress cross-presentation. Importantly, polyclonal CD8+T cells specific for Mtb antigens other than TB10.4 recognized Mtb-infected macrophages in a MHC-restricted manner.As TB10.4 elicits a dominant CD8+T cell response that poorly recognizes Mtb-infected macrophages, we propose that TB10.4 acts as a decoy antigen. Moreover, it appears that this response overshadows subdominant CD8+T cell response that can recognize Mtb-infected macrophages. The ability of Mtb to subvert the CD8+T cell response may explain why CD8+T cells make a disproportionately small contribution to host defense compared to CD4+T cells. The selection of Mtb antigens for vaccines has focused on antigens that generate immunodominant responses. We propose that establishing whether vaccine-elicited, Mtb-specific T cells recognize Mtb-infected macrophages could be a useful criterion for preclinical vaccine development.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3110-3110
Author(s):  
Erwan R. Piriou ◽  
Christine Jansen ◽  
Karel van Dort ◽  
Iris De Cuyper ◽  
Nening M. Nanlohy ◽  
...  

Abstract Objective: EBV-specific CD8+ T cells have been extensively studied in various settings, and appear to play a major role in the control of EBV-related malignancies. In contrast, it is still unclear whether EBV-specific CD4+ T cells play a role in vivo. To study this question, an assay was developed to measure the CD4+ T-cell response towards two EBV antigens, in both healthy (n=14) and HIV-infected subjects (n=23). In addition, both HAART-treated (n=12) and untreated HIV+ individuals (n=14) - including progressors to EBV-related lymphoma - were studied longitudinally. Methods: EBV-specific CD4+ T cells were stimulated with peptide pools from latent protein EBNA1 and lytic protein BZLF1, and detected by measurement of IFNg-production. Results: After direct ex vivo stimulation, EBNA1 or BZLF1-specific IFNg- (and/or IL2) producing CD4+ T cell numbers were low, and measurable in less than half of the subjects studied (either HIV- and HIV+). Therefore, PBMC were cultured for 12 days in the presence of peptides and IL2 (from day 3), and then restimulated with peptides, allowing specific and reproducible expansion of EBV-specific CD4+ T cells, independent of HLA type and ex vivo antigen processing. Interestingly, numbers of EBV-specific CD4+ T cells inversely correlated with EBV viral load, implying an important role for EBV-specific CD4+ T cells in the control of EBV in vivo. Untreated HIV-infected individuals had a lower CD4+ T cell response to EBNA1 and BZLF1 as compared to healthy EBV carriers and HAART-treated HIV+ subjects. In longitudinal samples, EBNA1-specific, but not BZLF1-specific T-cell numbers increased after HAART, while EBV load was not affected by treatment. In all the progressors to EBV-related lymphoma, EBV-specific CD4+ T cells were lost at least 24 months before lymphoma diagnosis. Conclusions: Both cross-sectional and longitudinal data suggest an important role for EBV-specific CD4+ T cells in the control of EBV-related malignancies. Furthermore, it seems that HAART treatment leads to recovery of EBNA1-specific, but not BZLF1-specific CD4+ T-cell responses, implying changes in the latency pattern of EBV, despite an unaltered cell-associated EBV DNA load. Thus, early HAART treatment might prevent loss of specific CD4+ T-cell help and progression to NHL.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2046-2046
Author(s):  
David M Markusic ◽  
Ashley T Martino ◽  
Federico Mingozzi ◽  
Katherine A. High ◽  
Roland W Herzog

Abstract Abstract 2046 Long-term partial correction of severe hemophilia B following peripheral vein delivery of an AAV8-factor IX vector in human subjects has recently been reported. However, the two patients in the high-dose cohort experienced a rise in liver transaminases and drop in circulating F.IX levels that was halted with steroid treatment. In both the AAV8 and in an earlier AAV2-based trial, a dose of 2×1012 vg/kg seemed above a threshold for the activation of capsid specific memory CD8+ cytotoxic T lymphocytes (CTL). Therefore, reaching a target of > 5% sustained F.IX level (for a change to mild disease) is currently limited by activation of T cell immunity against capsid. New clinical trials are in the pipeline with AAV8 vectors expressing hyperactive F.IX variants that provide therapeutic F.IX expression at lower vector doses, with a goal of avoiding activation of CD8+ T cell memory response. Lack of a preclinical model to study CTL-mediated loss of AAV gene therapy has hampered efforts at clinical development. Neither mice nor non-human primates have recapitulated the human experience, making it difficult to evaluate, prior to clinical trial design, the effect of the serotype, vector dose, and other parameters of the protocol on targeting by capsid-specific T cells. To solve this problem, we have recently developed a murine model, in which male BALB/c RAG −/− mice receive hepatic AAV gene transfer followed by intravenous administration of in vitro expanded strain-matched capsid-specific CD8+ T cells (specific to an MHC I capsid epitope conserved between AAV2 and AAV8 serotypes shared between BALB/c mice and humans expressing the B*0702 molecule). In this model, AAV2-F.IX transduced mice showed a rise in liver enzymes, loss of circulating F.IX, and loss of F.IX expressing hepatocytes, following adoptive transfer of the CTL one day but not 7 or 14 days after gene transfer. CD8+ T cell infiltrates were observed 7 days following adoptive transfer and were absent at 28 days, suggesting a small window for optimal AAV2 capsid antigen presentation in the liver. Additionally, mice were protected from capsid specific CD8+ T cells when treated with the proteasome inhibitor bortezomib, which impairs the generation of peptide epitopes for MHC I antigen presentation. We next tested in our model AAV8 vectors, which in mice show superior tropism for liver. Published pre-clinical data by others suggested lack of capsid-specific CD8+ cell activation with this serotype. While this was not borne out in a clinical trial, the onset of T cell responses and of transaminitis in humans appeared to be delayed for AAV8 vector (8–9 weeks after gene transfer) compared to AAV2 (3–4 weeks). In comparison to AAV2, CD8+ T cell transfer in AAV8 injected mice had a milder impact on circulating F.IX levels (<50% loss of expression as opposed to 4-fold loss with AAV2), and CD8+ T cell infiltrates were largely absent at day 7. In two different experiments, 25–40% of F.IX expressing hepatocytes were lost compared to AAV8-F.IX transduced mice that received no or control CD8+ T cells. However, when the T cells were transferred 7 or 14 days after AAV8 administration, a more robust loss of systemic F.IX expression was observed (3- to 5-fold), with a 45% and 32% reduction in F.IX expressing hepatocytes, respectively (Fig 1 A-C). CD8+ T cell infiltrates were prevalent by day 42 in the livers of these animals. Together, these data suggest that optimal AAV8 capsid presentation in the murine liver occurs between days 28 and 42 following gene transfer. This delay in targeting of AAV8 transduced murine liver is consistent with the delay observed between the AAV2 and AAV8 F.IX clinical trials. This murine model should be useful to (1) evaluate novel AAV serotypes and capsid variants, (2) test the effect of the vector dose, (3) test the effect of pharmacological modulation on capsid presentation and targeting by capsid-specific CTL, and (4) provide guidance for the timing for immune suppression. Figure 1. In vivo model for AAV8 capsid specific CD8 T cell response following AAV8 hF.IX liver gene transfer. (A) hF.IX levels (B) % hF.IX hepatocytes 42 days post vector (C) liver sections stained for hF.IX (red) and CD8 (green) 42 days post vector. Figure 1. In vivo model for AAV8 capsid specific CD8 T cell response following AAV8 hF.IX liver gene transfer. (A) hF.IX levels (B) % hF.IX hepatocytes 42 days post vector (C) liver sections stained for hF.IX (red) and CD8 (green) 42 days post vector. Disclosures: High: Amsterdam Molecular Therapeutics: ; Baxter Healthcare: Consultancy; Biogen Idec: Consultancy; bluebird bio, Inc.: Membership on an entity's Board of Directors or advisory committees; Genzyme, Inc.: Membership on an entity's Board of Directors or advisory committees; Novo Nordisk: ; Sangamo Biosciences: ; Shire Pharmaceuticals: Consultancy. Herzog:Genzyme Corp.: Royalties, AAV-FIX technology, Royalties, AAV-FIX technology Patents & Royalties.


1978 ◽  
Vol 147 (4) ◽  
pp. 1236-1252 ◽  
Author(s):  
T J Braciale ◽  
K L Yap

This report examines the requirement for infectious virus in the induction of influenza virus-specific cytotoxic T cells. Infectious influenza virus was found to be highly efficient at generating both primary and secondary cytotoxic T-cell response in vivo. Inactivated influenza virus however, failed to stimulate a detectable cytotoxic T-cell response in vivo even at immunizing doses 10(5)-10(6)-fold higher than the minimum stimulatory dose of infectious virus. Likewise inactivated virus failed to sensitize target cells for T cell-mediated lysis in vitro but could stimulate a specific cytotoxic response from primed cells in vitro. Possible requirements for the induction of virus-specific cytotoxic T-cell responses are discussed in light of these observations and those of other investigators.


2009 ◽  
Vol 21 (9) ◽  
pp. 51
Author(s):  
L. M. Moldenhauer ◽  
J. D. Hayball ◽  
S. A. Robertson

In healthy pregnancies the maternal immune system establishes paternal antigen-specific tolerance allowing survival of the semi-allogeneic conceptus. The cytokine environment is a key factor in determining the phenotype of antigen-specific lymphocytes, influencing the development of either cytotoxic or tolerogenic cells. We hypothesized that the cytokine environment at the time of priming to paternal antigens influences the phenotype of the maternal T cell response and pregnancy outcome. Transgenic Act-mOVA male mice expressing chicken ovalbumin (OVA) ubiquitously provided OVA as a model paternal antigen. OVA is present within the semen of Act-mOVA mice and is inherited and expressed by the conceptus tissue. OVA-reactive CD8+ OT-I T cells were activated with OVA in the presence of various immune-deviating cytokines in vitro, before transfer at 3.5 dpc to C57Bl/6 (B6) females gestating OVA-expressing fetuses. Pregnant mice received either naïve OT-I T cells, cytotoxic OT-I T cells stimulated in vitro in the presence of IL-2 or OT-I T cells stimulated in vitro in the presence of TGFβ1 and IL-10, two factors present in the uterus and associated with immune tolerance. Immunohistochemistry was utilized to demonstrate that OT-I T cells infiltrate into the implantation site. Cytotoxic OT-I T cells caused fetal loss, while OT-I T cells activated in vivo or in vitro with TGFβ1 and IL-10 did not cause fetal loss. Additionally, cytotoxic OT-I T cells did not affect B6 x B6 matings, demonstrating the antigen-specific nature of the T cell-mediated fetal loss. Collectively these experiments show that maternal antigen-reactive T cells activated in vivo in the cytokine environment of the mated uterus are tolerogenic, not cytotoxic, and implicate TGFβ1 and IL-10 as key elements of that environment. We conclude that the cytokine environment at the time of priming to paternal antigens influences the T cell phenotype and impacts upon maternal immune tolerance and fetal survival.


Blood ◽  
2021 ◽  
Author(s):  
Li Guo ◽  
Sikui Shen ◽  
Jesse W Rowley ◽  
Neal D. Tolley ◽  
Wenwen Jia ◽  
...  

Circulating platelets interact with leukocytes to modulate host immune and thrombotic responses. In sepsis, platelet-leukocyte interactions are increased, and have been associated with adverse clinical events, including increased platelet-T cell interactions. Sepsis is associated with reduced CD8+ T cell numbers and functional responses, but whether platelets regulate CD8+ T cell responses during sepsis remains unknown. In our current study, we systemically evaluated platelet antigen internalization and presentation through major histocompatibility complex class I (MHC-I) and their effects on antigen specific CD8+ T cells in sepsis in vivo and ex vivo. We discovered that both human and murine platelets internalize and proteolyze exogenous antigens, generating peptides that are loaded onto MHC-I. The expression of platelet MHC-I, but not platelet MHC-II, is significantly increased in human and murine platelets during sepsis and in human megakaryocytes stimulated with agonists generated systemically during sepsis (e.g., IFN-g and LPS). Upregulation of platelet MHC-I during sepsis increases antigen cross-presentation and interactions with CD8+ T cells in an antigen-specific manner. Using a platelet lineage specific MHC-I deficient mouse strain (B2mf/f--Pf4Cre), we demonstrate that platelet MHC-I regulates antigen-specific CD8+ T cell proliferation in vitro, as well as the number and functional responses of CD8+ T cells in vivo during sepsis. Loss of platelet MHC-I reduced sepsis-associated mortality in mice in an antigen specific setting. These data identify a new mechanism by which platelets, through MHC-I, process and cross-present antigens, engage antigen specific CD8+ T cells, and regulate CD8+ T cell number, functional responses, and outcomes during sepsis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5475-5475
Author(s):  
David M. Kofler ◽  
Markus Chmielewski ◽  
Heike Koehler ◽  
Tobias Riet ◽  
Patrick Schmidt ◽  
...  

Abstract Recombinant T cell receptors with defined specificity against tumor cells are a promising experimental approach in the elimination of residual leukemia and lymphoma cells. It is so far unresolved whether regulatory T cells with suppressor activities impair the efficiency of cytolytic T cells grafted with a recombinant immunoreceptor. The frequency of regulatory T cells is highly increased in tumor patients and their suppressive function seems to play a role in the fail of an autologous T cell response against the malignant cells. In this study we analyzed the antigen-triggered, specific activation of receptor grafted T cells in the presence or absence of regulatory CD4+CD25high T cells. CD3+ T cells were grafted with CEA-specific immunoreceptors containing the CD3-zeta signaling domain for T cell activation. Co-cultivation of receptor grafted effector T cells together with regulatory T cells repressed proliferation of the effector cells and decreased IL-2 secretion. Secretion of IFN-gamma and IL-10 was not impaired. Interestingly, the cytotoxicity of grafted effector T cells towards CEA-expressing tumor cells was not impaired by regulatory T cells in vitro. To evaluate the relevance in vivo, we used a Crl:CD1 Nu/Nu mouse model to assess growth of CEA+ tumor cells in the presence of receptor grafted effector T cells and of regulatory T cells. Mice inoculated with tumor cells together with CD3+ effector T cells without immunoreceptor and regulatory T cells developed earlier tumors with faster growth kinetics compared to mice that were inoculated with tumor cells, CD3+ T cells and CD4+CD25- control T cells. Using effector T cells that were equipped with a recombinant CEA-specific CD3-zeta immunoreceptor, 2 of 5 mice developed a tumor in the presence of regulatory T cells while none of the mice developed a tumor in the absence of regulatory T cells. Taken together, regulatory T cells obviously impair an antigen-specific, anti-tumor T cell attack in vivo. This seems to be due to repression of proliferation of the effector T cells and not to diminished cytotoxicity. These findings have major impact on the design of clinical studies involving adoptively transferred effector T cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3266-3266
Author(s):  
Sabine Tschiedel ◽  
Melanie Adler ◽  
Karoline Schubert ◽  
Annette Jilo ◽  
Enrica Mueller ◽  
...  

Abstract Abstract 3266 Poster Board III-1 Introduction: NmE2 (Nm23-H2, NDP kinase B) is one of a family of proteins that catalyze the transfer of gamma-phosphate between nucleoside-triphosphates and diphosphates. The two major family members, NmE1 and NmE2 are strongly implicated in the control of differentiation, proliferation, migration and apoptosis via interactions which are often independent of their kinase activity, NmE2 being a transcriptional activator of the c-myc gene. We recently identified NmE2 as a tumour associated, HLA-A32+ restricted, antigen in a patient with CML and found the protein (but not the mRNA) to be generally over expressed in CML but not in other haematological malignancies. We also detected a specific T-cell response in peripheral blood cells of a patient 5 years after transplantation. This identifies NmE2 as a potential target for both molecular and immunotherapy of CML. However, the development of immunotherapeutic approaches will depend on the ability of NmE2 to function as a tumour antigen in common HLA backgrounds. The aims of this study were firstly to investigate the antigenicity of NmE2 in the HLA-A2 background (which accounts for more than 50% of the Caucasian population), and secondly to characterise the regulatory relationship between Bcr/Abl and NmE2 using a cell line model of CML. Materials and Methods: 5 nonameric NmE2 peptides with predicted anchor amino acids for HLA-A2 were loaded at concentrations of 10μM separately onto HLA-A2 expressing antigen presenting cells. Elispot Assays were carried out with CD8+ MLLCs (for the identification of antigenic peptides) or CD8+ cells isolated directly from a CML patient at different time points after HCT. Ba/F3 cells stably expressing wild type and mutant forms of Bcr/Abl were treated with imatinib and nilotinib (0 – 10 μM) for 48h. Bcr/Abl activity was assessed by FACS using antibodies specific for the phosphorylated forms of CrkL and Stat5. NmE2 and c-Myc protein were detected by immunocytochemistry and Western blotting with specific antibodies [Santa Cruz, clones L-16 and 9E10 respectively]. Levels of nme2 and c-myc mRNA were determined by quantitative real time PCR. Results: Full length NmE2 protein and 2 of 5 HLA-A2 anchor-containing peptides tested (NmE2132–140 and NmE2112–120) were specifically recognized by the HLA-A2+ CD8+ MLLC, demonstrating the antigenicity of NmE2 in the HLA-A2 background in vitro. Furthermore, while CD8+ T-cells from a transplanted HLA-A2+ CML patient showed little or no specific reactivity in the first 10 months after HCT, a distinct reactivity (up to 0.6 % NmE2 reactive CD8+ T cells) became apparent at later stages, consistent with the development of an immune response against NmE2-expressing cells in vivo. The patient remained negative for bcr/abl transcripts throughout this period. BA/F3 Bcr/Abl cells expressed increased levels of NmE2 protein (but not mRNA) compared to the parent BA/F3 line. Interestingly, treatment with imatinib or nilotinib reduced NmE2 protein expression in BA/F3 Bcr/Abl, but not in cells expressing Bcr/Abl mutants resistant to the respective inhibitors. Treatment of BA/F3 Bcr/Abl cells with the PI3K inhibitor Ly294002 resulted in reduced Bcr/Abl activity and a corresponding reduction in both c-Myc and NmE2 protein levels, without affecting mRNA levels. Conclusion: The over expression of NmE2 is closely linked to Bcr/Abl kinase activity, the predominant level of regulation being post-transcriptional and dependent on PI-3K activity. The NmE2 protein is restricted by HLA-A2 as well as by HLA-A32. The development of an NmE2-specific T-cell response in a CML patient after stem cell transplantation suggests that NmE2 functions as a tumour antigen in HLA-A2+ patients in vivo and may be relevant to the long term immune control of CML. NmE2 is therefore a promising candidate for the development of new immunotherapeutic strategies for the treatment of CML. Disclosures: Lange: BMS: Honoraria; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Niederwieser:BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Research Funding.


2004 ◽  
Vol 199 (5) ◽  
pp. 649-659 ◽  
Author(s):  
Martine Gilleron ◽  
Steffen Stenger ◽  
Zaima Mazorra ◽  
Frederick Wittke ◽  
Sabrina Mariotti ◽  
...  

Mycobacterial lipids comprise a heterogeneous group of molecules capable of inducing T cell responses in humans. To identify novel antigenic lipids and increase our understanding of lipid-mediated immune responses, we established a panel of T cell clones with different lipid specificities. Using this approach we characterized a novel lipid antigen belonging to the group of diacylated sulfoglycolipids purified from Mycobacterium tuberculosis. The structure of this sulfoglycolipid was identified as 2-palmitoyl or 2-stearoyl-3-hydroxyphthioceranoyl-2′-sulfate-α-α′-d-trehalose (Ac2SGL). Its immunogenicity is dependent on the presence of the sulfate group and of the two fatty acids. Ac2SGL is mainly presented by CD1b molecules after internalization in a cellular compartment with low pH. Ac2SGL-specific T cells release interferon γ, efficiently recognize M. tuberculosis–infected cells, and kill intracellular bacteria. The presence of Ac2SGL-responsive T cells in vivo is strictly dependent on previous contact with M. tuberculosis, but independent from the development of clinically overt disease. These properties identify Ac2SGL as a promising candidate to be tested in novel vaccines against tuberculosis.


2008 ◽  
Vol 82 (10) ◽  
pp. 4697-4705 ◽  
Author(s):  
Nicolas P. Andrews ◽  
Christopher D. Pack ◽  
Aron E. Lukacher

ABSTRACT The CD8 coreceptor is important for positive selection of major histocompatibility complex I (MHC-I)-restricted thymocytes and in the generation of pathogen-specific T cells. However, the requirement for CD8 in these processes may not be essential. We previously showed that mice lacking β2-microglobulin are highly susceptible to tumors induced by mouse polyoma virus (PyV), but CD8-deficient mice are resistant to these tumors. In this study, we show that CD8-deficient mice also control persistent PyV infection as efficiently as wild-type mice and generate a substantial virus-specific, MHC-I-restricted, T-cell response. Infection with vesicular stomatitis virus (VSV), which is acutely cleared, also recruited antigen-specific, MHC-I-restricted T cells in CD8-deficient mice. Yet, unlike in VSV infection, the antiviral MHC-I-restricted T-cell response to PyV has a prolonged expansion phase, indicating a requirement for persistent infection in driving T-cell inflation in CD8-deficient mice. Finally, we show that the PyV-specific, MHC-I-restricted T cells in CD8-deficient mice, while maintained long term at near-wild-type levels, are short lived in vivo and have extremely narrow T-cell receptor repertoires. These findings provide a possible explanation for the resistance of CD8-deficient mice to PyV-induced tumors and have implications for the maintenance of virus-specific MHC-I-restricted T cells during persistent infection.


Sign in / Sign up

Export Citation Format

Share Document