In Vivo Model to Evaluate Loss of Liver-Derived Factor IX Expression Caused by AAV Capsid-Specific CD8+ T Cells

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2046-2046
Author(s):  
David M Markusic ◽  
Ashley T Martino ◽  
Federico Mingozzi ◽  
Katherine A. High ◽  
Roland W Herzog

Abstract Abstract 2046 Long-term partial correction of severe hemophilia B following peripheral vein delivery of an AAV8-factor IX vector in human subjects has recently been reported. However, the two patients in the high-dose cohort experienced a rise in liver transaminases and drop in circulating F.IX levels that was halted with steroid treatment. In both the AAV8 and in an earlier AAV2-based trial, a dose of 2×1012 vg/kg seemed above a threshold for the activation of capsid specific memory CD8+ cytotoxic T lymphocytes (CTL). Therefore, reaching a target of > 5% sustained F.IX level (for a change to mild disease) is currently limited by activation of T cell immunity against capsid. New clinical trials are in the pipeline with AAV8 vectors expressing hyperactive F.IX variants that provide therapeutic F.IX expression at lower vector doses, with a goal of avoiding activation of CD8+ T cell memory response. Lack of a preclinical model to study CTL-mediated loss of AAV gene therapy has hampered efforts at clinical development. Neither mice nor non-human primates have recapitulated the human experience, making it difficult to evaluate, prior to clinical trial design, the effect of the serotype, vector dose, and other parameters of the protocol on targeting by capsid-specific T cells. To solve this problem, we have recently developed a murine model, in which male BALB/c RAG −/− mice receive hepatic AAV gene transfer followed by intravenous administration of in vitro expanded strain-matched capsid-specific CD8+ T cells (specific to an MHC I capsid epitope conserved between AAV2 and AAV8 serotypes shared between BALB/c mice and humans expressing the B*0702 molecule). In this model, AAV2-F.IX transduced mice showed a rise in liver enzymes, loss of circulating F.IX, and loss of F.IX expressing hepatocytes, following adoptive transfer of the CTL one day but not 7 or 14 days after gene transfer. CD8+ T cell infiltrates were observed 7 days following adoptive transfer and were absent at 28 days, suggesting a small window for optimal AAV2 capsid antigen presentation in the liver. Additionally, mice were protected from capsid specific CD8+ T cells when treated with the proteasome inhibitor bortezomib, which impairs the generation of peptide epitopes for MHC I antigen presentation. We next tested in our model AAV8 vectors, which in mice show superior tropism for liver. Published pre-clinical data by others suggested lack of capsid-specific CD8+ cell activation with this serotype. While this was not borne out in a clinical trial, the onset of T cell responses and of transaminitis in humans appeared to be delayed for AAV8 vector (8–9 weeks after gene transfer) compared to AAV2 (3–4 weeks). In comparison to AAV2, CD8+ T cell transfer in AAV8 injected mice had a milder impact on circulating F.IX levels (<50% loss of expression as opposed to 4-fold loss with AAV2), and CD8+ T cell infiltrates were largely absent at day 7. In two different experiments, 25–40% of F.IX expressing hepatocytes were lost compared to AAV8-F.IX transduced mice that received no or control CD8+ T cells. However, when the T cells were transferred 7 or 14 days after AAV8 administration, a more robust loss of systemic F.IX expression was observed (3- to 5-fold), with a 45% and 32% reduction in F.IX expressing hepatocytes, respectively (Fig 1 A-C). CD8+ T cell infiltrates were prevalent by day 42 in the livers of these animals. Together, these data suggest that optimal AAV8 capsid presentation in the murine liver occurs between days 28 and 42 following gene transfer. This delay in targeting of AAV8 transduced murine liver is consistent with the delay observed between the AAV2 and AAV8 F.IX clinical trials. This murine model should be useful to (1) evaluate novel AAV serotypes and capsid variants, (2) test the effect of the vector dose, (3) test the effect of pharmacological modulation on capsid presentation and targeting by capsid-specific CTL, and (4) provide guidance for the timing for immune suppression. Figure 1. In vivo model for AAV8 capsid specific CD8 T cell response following AAV8 hF.IX liver gene transfer. (A) hF.IX levels (B) % hF.IX hepatocytes 42 days post vector (C) liver sections stained for hF.IX (red) and CD8 (green) 42 days post vector. Figure 1. In vivo model for AAV8 capsid specific CD8 T cell response following AAV8 hF.IX liver gene transfer. (A) hF.IX levels (B) % hF.IX hepatocytes 42 days post vector (C) liver sections stained for hF.IX (red) and CD8 (green) 42 days post vector. Disclosures: High: Amsterdam Molecular Therapeutics: ; Baxter Healthcare: Consultancy; Biogen Idec: Consultancy; bluebird bio, Inc.: Membership on an entity's Board of Directors or advisory committees; Genzyme, Inc.: Membership on an entity's Board of Directors or advisory committees; Novo Nordisk: ; Sangamo Biosciences: ; Shire Pharmaceuticals: Consultancy. Herzog:Genzyme Corp.: Royalties, AAV-FIX technology, Royalties, AAV-FIX technology Patents & Royalties.

Blood ◽  
2021 ◽  
Author(s):  
Li Guo ◽  
Sikui Shen ◽  
Jesse W Rowley ◽  
Neal D. Tolley ◽  
Wenwen Jia ◽  
...  

Circulating platelets interact with leukocytes to modulate host immune and thrombotic responses. In sepsis, platelet-leukocyte interactions are increased, and have been associated with adverse clinical events, including increased platelet-T cell interactions. Sepsis is associated with reduced CD8+ T cell numbers and functional responses, but whether platelets regulate CD8+ T cell responses during sepsis remains unknown. In our current study, we systemically evaluated platelet antigen internalization and presentation through major histocompatibility complex class I (MHC-I) and their effects on antigen specific CD8+ T cells in sepsis in vivo and ex vivo. We discovered that both human and murine platelets internalize and proteolyze exogenous antigens, generating peptides that are loaded onto MHC-I. The expression of platelet MHC-I, but not platelet MHC-II, is significantly increased in human and murine platelets during sepsis and in human megakaryocytes stimulated with agonists generated systemically during sepsis (e.g., IFN-g and LPS). Upregulation of platelet MHC-I during sepsis increases antigen cross-presentation and interactions with CD8+ T cells in an antigen-specific manner. Using a platelet lineage specific MHC-I deficient mouse strain (B2mf/f--Pf4Cre), we demonstrate that platelet MHC-I regulates antigen-specific CD8+ T cell proliferation in vitro, as well as the number and functional responses of CD8+ T cells in vivo during sepsis. Loss of platelet MHC-I reduced sepsis-associated mortality in mice in an antigen specific setting. These data identify a new mechanism by which platelets, through MHC-I, process and cross-present antigens, engage antigen specific CD8+ T cells, and regulate CD8+ T cell number, functional responses, and outcomes during sepsis.


Blood ◽  
2007 ◽  
Vol 110 (8) ◽  
pp. 2965-2973 ◽  
Author(s):  
Céline Beauvillain ◽  
Yves Delneste ◽  
Mari Scotet ◽  
Audrey Peres ◽  
Hugues Gascan ◽  
...  

Abstract Neutrophils are professional phagocytes that migrate early, in high number, to the infection sites. Our study has analyzed how neutrophils cross-present antigens and influence CD8+ T-cell responses. By using highly purified neutrophils from peritoneal exudates and bone marrow, we have shown that neutrophils cross-present ovalbumin to a CD8+ T-cell hybridoma and to naive CD8+ T cells from OT1 transgenic mice. Cross-presentation by neutrophils was TAP and proteasome dependent and was as efficient as in macrophages. Moreover, it actually occurred earlier than in professional antigen-presenting cells. Peritoneal exudate neutrophils from mice injected intraperitoneally with ovalbumin also cross-presented ovalbumin, proving that neutrophils take up and present exogenous antigens into major histocompatibility complex I (MHC I) molecules in vivo. We then evaluated the in vivo influence of antigen cross-presentation by neutrophils on CD8+ T-cell response using β2-microglobulin-deficient mice transferred with OT1 CD8+ T cells and injected with ovalbumin-pulsed neutrophils. Four days after neutrophil injection, OT1 cells proliferated and expressed effector functions (IFN-γ production and cytolysis). They also responded efficiently to a rechallenge with ovalbumin-pulsed dendritic cells in CFA. These data are the first demonstration that neutrophils cross-prime CD8+ T cells in vivo and suggest that they may constitute, together with professional antigen-presenting cells, an attractive target to induce cytotoxic T cells in vaccines.


2007 ◽  
Vol 204 (8) ◽  
pp. 1803-1812 ◽  
Author(s):  
Daisuke Kamimura ◽  
Michael J. Bevan

An optimal CD8+ T cell response requires signals from the T cell receptor (TCR), co-stimulatory molecules, and cytokines. In most cases, the relative contribution of these signals to CD8+ T cell proliferation, accumulation, effector function, and differentiation to memory is unknown. Recent work (Boyman, O., M. Kovar, M.P. Rubinstein, C.D. Surh, and J. Sprent. 2006. Science. 311:1924–1927; Kamimura, D., Y. Sawa, M. Sato, E. Agung, T. Hirano, and M. Murakami. 2006. J. Immunol. 177:306–314) has shown that anti–interleukin (IL) 2 monoclonal antibodies that are neutralizing in vitro enhance the potency of IL-2 in vivo. We investigated the role of IL-2 signals in driving CD8+ T cell proliferation in the absence of TCR stimulation by foreign antigen. IL-2 signals induced rapid activation of signal transducer and activator of transcription 5 in all CD8+ T cells, both naive and memory phenotype, and promoted the differentiation of naive CD8+ T cells into effector cells. IL-2–anti–IL-2 complexes induced proliferation of naive CD8+ T cells in an environment with limited access to self–major histocompatibility complex (MHC) and when competition for self-MHC ligands was severe. After transfer into wild-type animals, IL-2–activated CD8+ T cells attained and maintained a central memory phenotype and protected against lethal bacterial infection. IL-2–anti–IL-2 complex–driven memory-like CD8+ T cells had incomplete cellular fitness compared with antigen-driven memory cells regarding homeostatic turnover and cytokine production. These results suggest that intense IL-2 signals, with limited contribution from the TCR, program the differentiation of protective memory-like CD8+ cells but are insufficient to guarantee overall cellular fitness.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 2-3
Author(s):  
Sandeep Kumar ◽  
Moanaro Biswas ◽  
Annie R Pineros ◽  
Ype P De Jong ◽  
Roland W Herzog

Introduction: Adeno-associated virus (AAV) mediated gene transfer is currently evaluated in multiple Phase I/II and Phase III studies for the treatment of hemophilia. However, immune responses to both the AAV capsid and encoded transgene remain major impediments to clinical translation. Several studies have implicated innate immune sensors such as Toll-like receptors (TLR) and their downstream adaptor molecule MyD88 in sensing viral structures. TLR9-MyD88 signaling has been linked to cross-priming of CD8+ T cell responses to capsid and also to transgene product-specific CD8+ T cell responses. However, little is known about other signaling pathways that may lead to immune activation. Previously, our lab has shown that while liver gene transfer is capable of inducing immunological tolerance to AAV encoded transgene products, vector dose and design play a critical role. For instance, low hepatic gene expression levels may elicit a CD8+ T cell response to the AAV encoded transgene, resulting in loss of the model antigen ovalbumin (OVA) in C57BL/6 mice or of FIX expression in hemophilia B mice. We investigated innate immune sensing pathways that may play a role in initiating transgene specific CD8+ T cell response in the hepatic microenvironment. Further, we determined the contribution of hepatic antigen presenting cells (APC) by selectively depleting/neutralizing APCs and evaluating their effect on presentation of transgene product-derived antigen following AAV8-OVA liver gene delivery. Methods: Wild-type (WT) C57BL6 and specific innate sensing knockout mice on the C57BL6 background were intravenously (IV) injected with a predetermined immunogenic dose (1x109vg) of hepatotropic AAV8-OVA vector (Mol Ther 25:880, 2017). PBMCs were quantified at 4 weeks for OVA-specific CD8+ T cells using a class I MHC tetramer. Hepatic APC types [Kupffer cells, neutrophils, CD103+ dendritic cell (DC), CD11c+ DC, XCR1+ DC] involved in transgene specific CD8+ T cell activation were selectively depleted/inactivated by pre-treatment with gadolinium chloride (GdCl3), Ly6G, CD103 antibody respectively, or by administering diphtheria toxin (DT) to CD11c-DTR and XCR1-DTR mice. This was followed by intravenous administration of AAV8-OVA and CellTrace violet labeled OT-1 cells. Results: Similar to WT mice, TLR9-/-, TLR2-/-, TRIF-/-, IFNaR-/- and MDA5-/- mice developed a CD8+ T cell response indicating that these sensors do not play a role in transgene specific CD8+ T cells response. Interestingly, adaptor protein MyD88-/- mice did not elicit CD8+ T cell response to OVA, implying a MyD88 dependent but TLR9 independent response. Since MyD88 is an essential adaptor protein not only for TLR but also for interleukin-1 (IL-1) signaling pathways, we next analyzed IL-1R-/- mice. Similar to MyD88-/- mice, IL-1R-/- mice did not show OVA specific CD8+ T cells (p=0.006, 0.007 respectively), indicating that transgene-specific adaptive responses are mediated by IL-1R/MyD88 signaling. Kupffer cells and DCs are principal APCs in liver and infiltrating neutrophils could also act as APCs under inflammatory conditions in liver microenvironment. Using proliferation of OT-I cells as readout we tested if any of these cell types are required for presentation to transgene specific CD8+ T cells. In naïve control, GdCl3 treated and a-Ly6G antibody treated mice, OT-I cell proliferation reached 60%, 65% and 48% on average, respectively. Depletion of CD11c DCs substantially reduced the proliferation of OT-I cells to ~6% (p&lt;0.0001) indicating a critical role for DCs in mediating transgene specific CD8+ T cell responses. Since XCR1+ DCs are the major cross-presenting DCs and hepatic resident CD103+ DCs are shown to have intrinsically enhanced capacity to process and present antigen to naïve CD8+ T cells, we further sought to assess if any of these DCs plays a role in activation of transgene specific CD8+ T cells. Neutralization of CD103+ DCs reduced OT-I proliferation to 39% (p=0.01) whereas depletion of XCR1+ DCs reduced the proliferation to ~20% (p&lt;0.0001) indicating a major role for XCR1+ DCs. Conclusions: In summary, we uncovered a novel-signaling pathway that can activate CD8+ T cell responses during AAV gene transfer independent of TLR9 sensing. The IL-1R/MyD88 pathway drives activation of transgene specific CD8+ T cell, and XCR1+ DCs are critically involved in cross-presenting transgene product-derived antigen to CD8+ T cells. Disclosures Herzog: Takeda Pharmaceuticals: Patents & Royalties.


2004 ◽  
Vol 199 (11) ◽  
pp. 1595-1605 ◽  
Author(s):  
Ramon Arens ◽  
Koen Schepers ◽  
Martijn A. Nolte ◽  
Michiel F. van Oosterwijk ◽  
René A.W. van Lier ◽  
...  

In vivo priming of antigen-specific CD8+ T cells results in their expansion and differentiation into effector T cells followed by contraction into a memory T cell population that can be maintained for life. Recent evidence suggests that after initial antigenic stimulation, the magnitude and kinetics of the CD8+ T cell response are programmed. However, it is unclear to what extent CD8+ T cell instruction in vivo is modulated by costimulatory signals. Here, we demonstrate that constitutive ligation of the tumor necrosis factor receptor family member CD27 by its ligand CD70 quantitatively augments CD8+ T cell responses to influenza virus infection and EL-4 tumor challenge in vivo by incrementing initial expansion and maintaining higher numbers of antigen-specific T cells in the memory phase. Concomitantly, the quality of antigen-specific T cells improved as evidenced by increased interferon (IFN)-γ production and a greater cytotoxic potential on a per cell basis. As an apparent consequence, the superior effector T cell formation induced by CD70 protected against a lethal dose of poorly immunogenic EL4 tumor cells in a CD8+ T cell– and IFN-γ–dependent manner. Thus, CD70 costimulation enhances both the expansion and per cell activity of antigen-specific CD8+ T cells.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Xiaoning Zhao ◽  
Paul C Dimayuga ◽  
Juliana Yano ◽  
Jianchang Zhou ◽  
Wai Man Lio ◽  
...  

Background: Investigations in our laboratory identified endogenous, antigen-specific CD8+ T cells reactive to apoB-100 related peptide in apoE-/- mice using fluorescent synthetic soluble MHC-I/peptide complexes called Pentamers (Pent). We hypothesized that immunization of apoE-/- mice with the apoB-100 peptide p210, which we and others have reported to reduce atherosclerosis, will result in the activation of a specific CD8+ T cell population that can be detected by Pent analysis. Methods and Results: Binding of the p210 peptide to the mouse MHC-I allele H2Kb was determined in a prior study. A p210-Pent library was generated to screen splenocytes from p210 immunized apoE-/- mice. Mice were immunized with p210 conjugated to cBSA with Alum (p210) at 7, 10 and 12 weeks of age then euthanized at 13 weeks of age. PBS and cBSA/Alum (cBSA) treatment served as controls. The screening assay identified 2 potential Pents that could discriminate the immunized mice from the controls. The Pent with the largest difference, called Pent 5, was selected for further study. Pent 5(+)CD8+ T cells in p210 immunized mice were significantly increased compared to PBS and cBSA controls (1.3±0.9% vs. 0.6±0.4% and 0.7±0.4%, respectively; P<0.05). Immunization of apoE-/- mice expressing GFP on the FoxP3 promoter showed no difference in Pent 5(+)CD8+FoxP3+ T cells. High fat diet feeding for 6 weeks did not affect Pent 5(+)CD8+ T cells compared to normal chow fed mice confirming specificity of the Pent 5(+)CD8+ T cell response to immunization. Pent 5 binding significantly reduced cytolytic activity of p210-immune CD8+ T cells compared to control (1.2±2.2% vs. 17.0±13.8%, respectively), indicating antigen-specific blocking. Pent 5(+)CD8+ T cells cultured for 21 days showed significantly higher cytolytic activity compared to Pent 5(-)CD8+ T cells (16.5±7.0% vs. 2.8±3.6%, respectively). Immunization with the p210 peptide reduced aortic atherosclerosis measured by en face oil red-o stain area compared to PBS and cBSA control groups (4.0±1.7% vs. 6.4±2.3% and 5.7±2.2%, respectively; P<0.01), confirming our previous report. Conclusion: The use of Pentamers provide clear evidence that p210 immunization results in CD8+ T cell activation with functions specific to the p210 antigen.


2016 ◽  
Vol 90 (10) ◽  
pp. 5187-5199 ◽  
Author(s):  
Qingsong Qin ◽  
Shwetank ◽  
Elizabeth L. Frost ◽  
Saumya Maru ◽  
Aron E. Lukacher

ABSTRACTMouse polyomavirus (MPyV) is a ubiquitous persistent natural mouse pathogen. A glutamic acid (E)-to-glycine (G) difference at position 91 of the VP1 capsid protein shifts the profile of tumors induced by MPyV from an epithelial to a mesenchymal cell origin. Here we asked if this tropism difference affects the MPyV-specific CD8 T cell response, which controls MPyV infection and tumorigenesis. Infection by the laboratory MPyV strain RA (VP1-91G) or a strain A2 mutant with an E-to-G substitution at VP1 residue 91 [A2(91G)] generated a markedly smaller virus-specific CD8 T cell response than that induced by A2(VP1-91E) infection. Mutant A2(91G)-infected mice showed a higher frequency of memory precursor (CD127hiKLRG1lo) CD8 T cells and a higher recall response than those of A2-infected mice. Using T cell receptor (TCR)-transgenic CD8 T cells and immunization with peptide-pulsed dendritic cells, we found that early bystander inflammation associated with A2 infection contributed to recruitment of the larger MPyV-specific CD8 T cell response. Beta interferon (IFN-β) transcripts were induced early during A2 or A2(91G) infections. IFN-β inhibited replication of A2 and A2(91G)in vitro. Using mice lacking IFN-αβ receptors (IFNAR−/−), we showed that type I IFNs played a role in controlling MPyV replicationin vivobut differentially affected the magnitude and functionality of virus-specific CD8 T cells recruited by A2 and A2(91G) viral infections. These data indicate that type I IFNs are involved in protection against MPyV infection and that their effect on the antiviral CD8 T cell response depends on capsid-mediated tropism properties of the MPyV strain.IMPORTANCEIsolates of the human polyomavirus JC virus from patients with the frequently fatal demyelinating brain disease progressive multifocal leukoencephalopathy (PML) carry single amino acid substitutions in the domain of the VP1 capsid protein that binds the sialic acid moiety of glycoprotein/glycolipid receptors on host cells. These VP1 mutations may alter neural cell tropism or enable escape from neutralizing antibodies. Changes in host cell tropism can affect recruitment of virus-specific CD8 T cells. Using mouse polyomavirus, we demonstrate that a single amino acid difference in VP1 known to shift viral tropism profoundly affects the quantity and quality of the anti-polyomavirus CD8 T cell response and its differentiation into memory cells. These findings raise the possibility that CD8 T cell responses to infections by human polyomaviruses may be influenced by VP1 mutations involving domains that engage host cell receptors.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A626-A626
Author(s):  
Annah Rolig ◽  
Daniel Rose ◽  
Grace Helen McGee ◽  
Saul Kivimae ◽  
Werner Rubas ◽  
...  

BackgroundTumor cell death caused by radiation therapy (RT) can trigger anti-tumor immune responses in part because dying cells release adjuvant factors that amplify and sustain DC and T cell responses. We previously demonstrated that bempegaldesleukin (BEMPEG:NKTR-214, a first-in-class CD122-preferential IL-2 pathway agonist), significantly enhanced the anti-tumor efficacy of RT through a T cell-dependent mechanism. Because RT can induce either immunogenic or tolerogenic cell death, depending on a multitude of factors (radiation dose, cell cycle phase, and tumor microenvironment), we hypothesized that providing a specific immunogenic adjuvant, like intratumoral NKTR-262, a novel toll-like receptor (TLR) 7/8 agonist, to the tumor site would further improve systemic tumor-specific immunity by promoting synergistic activation of local immunostimulatory innate immune responses. Therefore, we evaluated whether intratumoral NKTR-262, combined with systemic BEMPEG treatment would result in improved tumor-specific immunity and survival compared to BEMPEG combined with RT.MethodsTumor-bearing mice (CT26; EMT6) received BEMPEG (0.8 mg/kg; iv), RT (16 Gy x 1), and/or intratumoral NKTR-262 (0.5 mg/kg). Flow cytometry was used to evaluate CD4+ and CD8+ T cell activation status in the blood and tumor (7 days post-treatment). The contribution of specific immune subsets was determined by depletion of CD4+, CD8+, or NK cells. CD8+ T cell cytolytic activity was determined in vitro with an Incucyte assay. Data are representative of 1–2 independent experiments (n=5–14/group) and statistical significance was determined by 1-way ANOVA (p-value cut-off of 0.05).ResultsBEMPEG/NKTR-262 resulted in significantly improved survival compared to BEMPEG/RT. Both combination therapies were CD8+ T cell dependent. However, response to BEMPEG/NKTR-262 was characterized by a significant expansion of activated CD8+ T cells (GzmA+; Ki-67+; ICOS+; PD-1+) in the blood, which correlated with reduced tumor size (p<0.05). In the tumor, BEMPEG/NKTR-262 induced higher frequencies of GzmA+ CD8+ T cells exhibiting reduced expression of suppressive molecules (PD-1+, TIM-3+), compared to BEMPEG/RT. Additionally, CD8+ T cells isolated from BEMPEG/NKTR-262-treated tumors had greater cytolytic capacity than those from BEMPEG/RT-treated mice.ConclusionsCombining BEMPEG with NKTR-262 lead to a more robust expansion of activated CD8+ T cells compared to the BEMPEG/RT combination. Enhancement of the activated CD8+ T cell response in mice treated with NKTR-262 in combination with BEMPEG suggests that intratumoral TLR stimulation provides superior antigen presentation and costimulatory activity compared to RT. A clinical trial of BEMPEG/NKTR-262 for patients with metastatic solid tumors is in progress (NCT03435640).


Sign in / Sign up

Export Citation Format

Share Document