scholarly journals Comparative Study of Immunogenic Properties of Purified Capsular Polysaccharides from Streptococcus suis Serotypes 3, 7, 8, and 9: the Serotype 3 Polysaccharide Induces an Opsonizing IgG Response

2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Guillaume Goyette-Desjardins ◽  
Jean-Philippe Auger ◽  
Dominic Dolbec ◽  
Evgeny Vinogradov ◽  
Masatoshi Okura ◽  
...  

ABSTRACT Streptococcus suis is an encapsulated bacterium and one of the most important swine pathogens and a zoonotic agent for which no effective vaccine exists. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. In addition to the previously known serotypes 2 and 14, which are nonimmunogenic, we have recently purified and described the CPS structures for serotypes 1, 1/2, 3, 7, 8, and 9. Here, we aimed to elucidate how these new structurally diverse CPSs interact with the immune system to generate anti-CPS antibody responses. CPS-stimulated dendritic cells produced significant levels of C–C motif chemokine ligand 3 (CCL3), partially via Toll-like receptor 2 (TLR2)- and myeloid differentiation factor 88-dependent pathways, and CCL2, via TLR-independent mechanisms. Mice immunized with purified serotype 3 CPS adjuvanted with TiterMax Gold produced an opsonizing IgG response, whereas other CPSs or adjuvants were negative. Mice hyperimmunized with heat-killed S. suis serotypes 3 and 9 both produced anti-CPS type 1 IgGs, whereas serotypes 7 and 8 remained negative. Also, mice infected with sublethal doses of S. suis serotype 3 produced primary anti-CPS IgM and IgG responses, of which only IgM were boosted after a secondary infection. In contrast, mice sublethally infected with S. suis serotype 9 produced weak anti-CPS IgM and IgG responses following a secondary infection. This study provides important information on the divergent evolution of CPS serotypes with highly different structural and/or biochemical properties within S. suis and their interaction with the immune system.

2014 ◽  
Vol 83 (1) ◽  
pp. 441-453 ◽  
Author(s):  
Cynthia Calzas ◽  
Paul Lemire ◽  
Gael Auray ◽  
Volker Gerdts ◽  
Marcelo Gottschalk ◽  
...  

Streptococcus suisserotype 2 is an extracellular encapsulated bacterium that causes severe septicemia and meningitis in swine and humans. Albeit crucial in the fight against encapsulated bacteria, the nature of the capsular polysaccharide (CPS)-specific antibody (Ab) response duringS. suistype 2 infection is unknown. We compared for the first time the features of CPS-specific versus protein-specific Ab responses during experimental infections with live virulentS. suistype 2 in mice. The primary protein-specific Ab response was dominated by both type 1 and 2 IgG subclasses, whereas IgM titers were more modest. The secondary protein-specific Ab response showed all of the features of a memory response with faster kinetics and boosted the titers of all Ig isotypes. In contrast, the primary CPS-specific Ab response was either inexistent or had titers only slightly higher than those in noninfected animals and was essentially composed of IgM. A poor CPS-specific memory response was observed, with only a moderate boost in IgM titers and no IgG. Both protein- and CPS-specific Ab responses were Toll-like receptor 2 independent. By usingS. suistype 2 strains of European or North American origin, the poor CPS-specific Ab response was demonstrated to be independent of the genotypic/phenotypic diversity of the strain within serotype 2. Finally, the CPS-specific Ab response was also impaired and lacked isotype switching inS. suis-infected pigs, the natural host of the bacterium. The better resistance of preinfected animals to reinfection with the same strain ofS. suistype 2 might thus more likely be related to the development of a protein rather than CPS Ab response.


2011 ◽  
Vol 55 (12) ◽  
pp. 5850-5860 ◽  
Author(s):  
Jose Antonio Escudero ◽  
Alvaro San Millan ◽  
Belen Gutierrez ◽  
Laura Hidalgo ◽  
Roberto M. La Ragione ◽  
...  

ABSTRACTStreptococcus suisis an emerging zoonotic pathogen. With the lack of an effective vaccine, antibiotics remain the main tool to fight infections caused by this pathogen. We have previously observed a reserpine-sensitive fluoroquinolone (FQ) efflux phenotype in this species. Here, SatAB and SmrA, two pumps belonging to the ATP binding cassette (ABC) and the major facilitator superfamily (MFS), respectively, have been analyzed in the fluoroquinolone-resistant clinical isolate BB1013. Genes encoding these pumps were overexpressed either constitutively or in the presence of ciprofloxacin in this strain. These genes could not be cloned in plasmids inEscherichia colidespite strong expression repression. Finally, site-directed insertion ofsmrAandsatABin theamylocus of theBacillus subtilischromosome using ligated PCR amplicons allowed for the functional expression and study of both pumps. Results showed that SatAB is a narrow-spectrum fluoroquinolone exporter (norfloxacin and ciprofloxacin), susceptible to reserpine, whereas SmrA was not involved in fluoroquinolone resistance. Chromosomal integration inBacillusis a novel method for studying efflux pumps from Gram-positive bacteria, which enabled us to demonstrate the possible role of SatAB, and not SmrA, in fluoroquinolone efflux inS. suis.


2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Melissa Illingworth ◽  
Anna J. Hooppaw ◽  
Lu Ruan ◽  
Derek J. Fisher ◽  
Lingling Chen

ABSTRACT Chaperonins are essential for cellular growth under normal and stressful conditions and consequently represent one of the most conserved and ancient protein classes. The paradigm Escherichia coli chaperonin, EcGroEL, and its cochaperonin, EcGroES, assist in the folding of proteins via an ATP-dependent mechanism. In addition to the presence of groEL and groES homologs, groEL paralogs are found in many bacteria, including pathogens, and have evolved poorly understood species-specific functions. Chlamydia spp., which are obligate intracellular bacteria, have reduced genomes that nonetheless contain three groEL genes, Chlamydia groEL (ChgroEL), ChgroEL2, and ChgroEL3. We hypothesized that ChGroEL is the bona fide chaperonin and that the paralogs perform novel Chlamydia-specific functions. To test our hypothesis, we investigated the biochemical properties of ChGroEL and its cochaperonin, ChGroES, and queried the in vivo essentiality of the three ChgroEL genes through targeted mutagenesis in Chlamydia trachomatis. ChGroEL hydrolyzed ATP at a rate 25% of that of EcGroEL and bound with high affinity to ChGroES, and the ChGroEL-ChGroES complex could refold malate dehydrogenase (MDH). The chlamydial ChGroEL was selective for its cognate cochaperonin, ChGroES, while EcGroEL could function with both EcGroES and ChGroES. A P35T ChGroES mutant (ChGroESP35T) reduced ChGroEL-ChGroES interactions and MDH folding activities but was tolerated by EcGroEL. Both ChGroEL-ChGroES and EcGroEL-ChGroESP35T could complement an EcGroEL-EcGroES mutant. Finally, we successfully inactivated both paralogs but not ChgroEL, leading to minor growth defects in cell culture that were not exacerbated by heat stress. Collectively, our results support novel functions for the paralogs and solidify ChGroEL as a bona fide chaperonin that is biochemically distinct from EcGroEL. IMPORTANCE Chlamydia is an important cause of human diseases, including pneumonia, sexually transmitted infections, and trachoma. The chlamydial chaperonin ChGroEL and chaperonin paralog ChGroEL2 have been associated with survival under stress conditions, and ChGroEL is linked with immunopathology elicited by chlamydial infections. However, their exact roles in bacterial survival and disease remain unclear. Our results further substantiate the hypotheses that ChGroEL is the primary chlamydial chaperonin and that the paralogs play specialized roles during infection. Furthermore, ChGroEL and the mitochondrial GroEL only functioned with their cochaperonin, in contrast to the promiscuous nature of GroEL from E. coli and Helicobacter pylori, which might indicate a divergent evolution of GroEL during the transition from a free-living organism to an obligate intracellular lifestyle.


2017 ◽  
Vol 86 (3) ◽  
Author(s):  
Susan L. Brockmeier ◽  
Crystal L. Loving ◽  
Tracy L. Nicholson ◽  
Jinhong Wang ◽  
Sarah E. Peters ◽  
...  

ABSTRACT Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis . While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis , the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Ivan Campeotto ◽  
Francis Galaway ◽  
Shahid Mehmood ◽  
Lea K. Barfod ◽  
Doris Quinkert ◽  
...  

ABSTRACT Plasmodium falciparum RH5 is a secreted parasite ligand that is essential for erythrocyte invasion through direct interaction with the host erythrocyte receptor basigin. RH5 forms a tripartite complex with two other secreted parasite proteins, CyRPA and RIPR, and is tethered to the surface of the parasite through membrane-anchored P113. Antibodies against RH5, CyRPA, and RIPR can inhibit parasite invasion, suggesting that vaccines containing these three components have the potential to prevent blood-stage malaria. To further explore the role of the P113-RH5 interaction, we selected monoclonal antibodies against P113 that were either inhibitory or noninhibitory for RH5 binding. Using a Fab fragment as a crystallization chaperone, we determined the crystal structure of the RH5 binding region of P113 and showed that it is composed of two domains with structural similarities to rhamnose-binding lectins. We identified the RH5 binding site on P113 by using a combination of hydrogen-deuterium exchange mass spectrometry and site-directed mutagenesis. We found that a monoclonal antibody to P113 that bound to this interface and inhibited the RH5-P113 interaction did not inhibit parasite blood-stage growth. These findings provide further structural information on the protein interactions of RH5 and will be helpful in guiding the development of blood-stage malaria vaccines that target RH5. IMPORTANCE Malaria is a deadly infectious disease primarily caused by the parasite Plasmodium falciparum. It remains a major global health problem, and there is no highly effective vaccine. A parasite protein called RH5 is centrally involved in the invasion of host red blood cells, making it—and the other parasite proteins it interacts with—promising vaccine targets. We recently identified a protein called P113 that binds RH5, suggesting that it anchors RH5 to the parasite surface. In this paper, we use structural biology to locate and characterize the RH5 binding region on P113. These findings will be important to guide the development of new antimalarial vaccines to ultimately prevent this disease, which affects some of the poorest people on the planet.


2020 ◽  
Vol 21 (2/3) ◽  
pp. 111-126
Author(s):  
Aldo M. Leiva ◽  
Michel E. Clark

Purpose To examine the COVID-19 pandemic’s effects on regulated entities within the context of cybersecurity, US Securities and Exchange Commission (SEC) compliance, and parallel proceedings. Design/methodology/approach Describes the SEC’s ability to conduct its operations within the telework environment, its commitment and ability to monitor the securities market, its enhanced monitoring of the adverse effects of SEC-regulated companies from COVID-19, its guidance to public companies of disclosure obligations related to cybersecurity risks and incidents, the SEC Office of Compliance and Examinations’s (OCIE’s) focus on broker-dealers’ and investment advisories’ cybersecurity preparedness, the role and activities of the SEC Division of Enforcement’s Cyber Unit, and parallel proceedings on cyberbreaches and incidents by different agencies, branches of government or private litigants. Findings SEC-regulated entities face many challenges in trying to maintain their ongoing business operations and infrastructure due to severe financial pressures, the threat of infection to employees and customers, and cybersecurity risks posed by remote operations from hackers and fraudsters. The SEC has reemphasized that its long-standing focus on cybersecurity and resiliency within the securities industry will continue, including ongoing vigilance over companies’ efforts to identify, assess, and address the inherent, heightened cybersecurity risks of teleworking and the resource reallocation that business need to sustain their operations until a safe and effective vaccine is developed for COVID-19. Originality/value Expert analysis and guidance from experienced lawyers with expertise in securities, litigation, government enforcement, information technology, data protection, privacy and cybersecurity.


2011 ◽  
Vol 77 (24) ◽  
pp. 8754-8764 ◽  
Author(s):  
Karolien Bers ◽  
Baptiste Leroy ◽  
Philip Breugelmans ◽  
Pieter Albers ◽  
Rob Lavigne ◽  
...  

ABSTRACTThe soil bacterial isolateVariovoraxsp. strain SRS16 mineralizes the phenylurea herbicide linuron. The proposed pathway initiates with hydrolysis of linuron to 3,4-dichloroaniline (DCA) andN,O-dimethylhydroxylamine, followed by conversion of DCA to Krebs cycle intermediates. Differential proteomic analysis showed a linuron-dependent upregulation of several enzymes that fit into this pathway, including an amidase (LibA), a multicomponent chloroaniline dioxygenase, and enzymes associated with a modified chlorocatecholortho-cleavage pathway. Purified LibA is a monomeric linuron hydrolase of ∼55 kDa with aKmand aVmaxfor linuron of 5.8 μM and 0.16 nmol min−1, respectively. This novel member of the amidase signature family is unrelated to phenylurea-hydrolyzing enzymes from Gram-positive bacteria and lacks activity toward other tested phenylurea herbicides. Orthologues oflibAare present in all other tested linuron-degradingVariovoraxstrains with the exception ofVariovoraxstrains WDL1 and PBS-H4, suggesting divergent evolution of the linuron catabolic pathway in differentVariovoraxstrains. The organization of the linuron degradation genes identified in the draft SRS16 genome sequence indicates that gene patchwork assembly is at the origin of the pathway. Transcription analysis suggests that a catabolic intermediate, rather than linuron itself, acts as effector in activation of the pathway. Our study provides the first report on the genetic organization of a bacterial pathway for complete mineralization of a phenylurea herbicide and the first report on a linuron hydrolase in Gram-negative bacteria.


2014 ◽  
Vol 58 (8) ◽  
pp. 4931-4934 ◽  
Author(s):  
Nita R. Shah ◽  
Robert E. W. Hancock ◽  
Rachel C. Fernandez

ABSTRACTBordetella pertussis, the causative agent of whooping cough, has many strategies for evading the human immune system. Lipopolysaccharide (LPS) is an important Gram-negative bacterial surface structure that activates the immune system via Toll-like receptor 4 and enables susceptibility to cationic antimicrobial peptides (CAMPs). We show modification of the lipid A region of LPS with glucosamine increased resistance to numerous CAMPs, including LL-37. Furthermore, we demonstrate that this glucosamine modification increased resistance to outer membrane perturbation.


2013 ◽  
Vol 80 (3) ◽  
pp. 1062-1071 ◽  
Author(s):  
Jian Wang ◽  
Yong Gao ◽  
Kunling Teng ◽  
Jie Zhang ◽  
Shutao Sun ◽  
...  

ABSTRACTLantibiotics are ribosomally synthesized, posttranslationally modified antimicrobial peptides. Their biosynthesis genes are usually organized in gene clusters, which are mainly found in Gram-positive bacteria, including pathogenic streptococci. Three highly virulentStreptococcus suisserotype 2 strains (98HAH33, 05ZYH33, and SC84) have been shown to contain an 89K pathogenicity island. Here, on these islands, we unveiled and reannotated a putative lantibiotic locus designatedsuiwhich contains a virulence-associated two-component regulator,suiK-suiR. In silicoanalysis revealed that the putative lantibiotic modification genesuiMwas interrupted by a 7.9-kb integron and that other biosynthesis-related genes contained various frameshift mutations. By reconstituting the intactsuiMinEscherichia colitogether with a semi-in vitrobiosynthesis system, a putative lantibiotic named suicin was produced with bactericidal activities against a variety of Gram-positive strains, including pathogenic streptococci and vancomycin-resistant enterococci. Ring topology dissection indicated that the 34-amino-acid lantibiotic contained two methyllanthionine residues and one disulfide bridge, which render suicin in an N-terminal linear and C-terminal globular shape. To confirm the function ofsuiK-suiR, SuiR was overexpressed and purified.In vitroanalysis showed that SuiR could specifically bind to thesuiAgene promoter. Its coexpression withsuiKcould activatesuiAgene promoter inLactococcus lactisNZ9000. Conclusively, we obtained a novel lantibiotic suicin by restoring its production from the remnantsuilocus and demonstrated that virulence-associated SuiK-SuiR regulates its production.


Author(s):  
Jonathan D. Moore

Our hopes of using the power of the immune system to control tumours have been partially fulfilled with anti-PD1 antibodies and other checkpoint inhibitors and the use of engineered T cells targeting lineage-specific surface markers with chimeric antigen receptors. Can these successes be generalised? Therapeutic cancer vaccines aim to educate or re-educate the immune system to recognise tumour specific or tumour associated antigens. After many false dawns, some positive data for the effectiveness of such an approach is starting to emerge in advanced solid tumours, albeit as combination therapies with checkpoint inhibitors. But is the field targeting the right antigens? Interventions using the most effective vaccine platforms to target certain sets of antigens in patients with low disease burden might bring impressive long-term benefits to patients as single agents.


Sign in / Sign up

Export Citation Format

Share Document