Therapeutic cancer vaccines: reasons to believe

Author(s):  
Jonathan D. Moore

Our hopes of using the power of the immune system to control tumours have been partially fulfilled with anti-PD1 antibodies and other checkpoint inhibitors and the use of engineered T cells targeting lineage-specific surface markers with chimeric antigen receptors. Can these successes be generalised? Therapeutic cancer vaccines aim to educate or re-educate the immune system to recognise tumour specific or tumour associated antigens. After many false dawns, some positive data for the effectiveness of such an approach is starting to emerge in advanced solid tumours, albeit as combination therapies with checkpoint inhibitors. But is the field targeting the right antigens? Interventions using the most effective vaccine platforms to target certain sets of antigens in patients with low disease burden might bring impressive long-term benefits to patients as single agents.

2018 ◽  
Vol 12 ◽  
pp. 117822341877480 ◽  
Author(s):  
Issam Makhoul ◽  
Mohammad Atiq ◽  
Ahmed Alwbari ◽  
Thomas Kieber-Emmons

The immune system plays a major role in cancer surveillance. Harnessing its power to treat many cancers is now a reality that has led to cures in hopeless situations where no other solutions were available from traditional anticancer drugs. These spectacular achievements rekindled the oncology community’s interest in extending the benefits to all cancers including breast cancer. The first section of this article reviews the biological foundations of the immune response to different subtypes of breast cancer and the ways cancer may overcome the immune attack leading to cancer disease. The second section is dedicated to the actual immune treatments including breast cancer vaccines, checkpoint inhibitors, monoclonal antibodies, and the “unconventional” immune role of chemotherapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Caitlyn N. Myrdal ◽  
Srinath Sundararajan

Little is known about the optimal sequencing of targeted therapy and immunotherapy in the treatment of patients with BRAFV600-mutated metastatic melanoma. BRAF/MEK inhibition often has the benefit of rapid disease regression; however, resistance is frequently seen with long-term use. Treatment with immune checkpoint inhibitors offers the potential for long-term response but displays a lower rate of objective response. The benefit of synergy between therapies is apparent; however, there is limited data regarding optimal sequencing in the treatment of advanced melanoma. We present the case of a 62-year-old gentleman with advanced BRAFV600-mutated melanoma who followed an unconventional treatment path. After progressing on single-agent vemurafenib, he had response to multiple modalities of immunotherapy before progression. After, he had a substantial response to multiple BRAF/MEK inhibitor rechallenges before developing resistance. The patient is now stable after a retrial of combination immunotherapy. Our case illustrates that with the right sequencing of therapy, meaningful clinical responses can be elicited with rechallenging of targeted therapy and immunotherapy in metastatic melanoma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Samantha J. Paston ◽  
Victoria A. Brentville ◽  
Peter Symonds ◽  
Lindy G. Durrant

Vaccination was first pioneered in the 18th century by Edward Jenner and eventually led to the development of the smallpox vaccine and subsequently the eradication of smallpox. The impact of vaccination to prevent infectious diseases has been outstanding with many infections being prevented and a significant decrease in mortality worldwide. Cancer vaccines aim to clear active disease instead of aiming to prevent disease, the only exception being the recently approved vaccine that prevents cancers caused by the Human Papillomavirus. The development of therapeutic cancer vaccines has been disappointing with many early cancer vaccines that showed promise in preclinical models often failing to translate into efficacy in the clinic. In this review we provide an overview of the current vaccine platforms, adjuvants and delivery systems that are currently being investigated or have been approved. With the advent of immune checkpoint inhibitors, we also review the potential of these to be used with cancer vaccines to improve efficacy and help to overcome the immune suppressive tumor microenvironment.


2019 ◽  
Vol 19 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Hanjiao Qin ◽  
Jiyao Sheng ◽  
Dan Zhang ◽  
Xuewen Zhang ◽  
Linlin Liu ◽  
...  

Background: Patients with low response rates to cancer vaccines, short duration of anti-tumor response after vaccination, and relatively weak curative effects are problems that have not been resolved effectively during the development and application of cancer vaccines. With the continuous improvement of knowledge and awareness regarding the immune system and cancer cells, many researches have helped to explain the reasons for poor vaccine efficacy. Input from researchers accompanied by some newly emerged strategies could bring hope to improve the therapeutic effects of vaccines. Methods: Data were collected from Web of Science, Medline, Pubmed, through searching of these keywords: “cancer vaccine”, “cancer stem cell”, “targeted agent”, “immune checkpoint blockade” and “neoantigen”. Results: It may be more effective in immunotherapy of human cancers, including cancer stem cell vaccines, combination vaccines with targeted agents or immune checkpoint blockade, and neoantigen-based vaccines. Conclusion: Personalized vaccines will become the mainstream solution of cancer treatment program with the continuous improvement of human understanding of the immune system and the progress of related experiments.


2021 ◽  
Vol 22 (15) ◽  
pp. 8035
Author(s):  
Chang Gon Kim ◽  
Yun Beom Sang ◽  
Ji Hyun Lee ◽  
Hong Jae Chon

Therapeutic cancer vaccines have become increasingly qualified for use in personalized cancer immunotherapy. A deeper understanding of tumor immunology and novel antigen delivery technologies has assisted in optimizing vaccine design. Therapeutic cancer vaccines aim to establish long-lasting immunological memory against tumor cells, thereby leading to effective tumor regression and minimizing non-specific or adverse events. However, due to several resistance mechanisms, significant challenges remain to be solved in order to achieve these goals. In this review, we describe our current understanding with respect to the use of the antigen repertoire in vaccine platform development. We also summarize various intrinsic and extrinsic resistance mechanisms behind the failure of cancer vaccine development in the past. Finally, we suggest a strategy that combines immune checkpoint inhibitors to enhance the efficacy of cancer vaccines.


2021 ◽  
Vol 12 ◽  
Author(s):  
Espen Basmo Ellingsen ◽  
Sara M. Mangsbo ◽  
Eivind Hovig ◽  
Gustav Gaudernack

Telomerase-based therapeutic cancer vaccines (TCVs) have been under clinical investigation for the past two decades. Despite past failures, TCVs have gained renewed enthusiasm for their potential to improve the efficacy of checkpoint inhibition. Telomerase stands as an attractive target for TCVs due to its almost universal presence in cancer and its essential function promoting tumor growth. Herein, we review tumor telomerase biology that may affect the efficacy of therapeutic vaccination and provide insights on optimal vaccine design and treatment combinations. Tumor types possessing mechanisms of increased telomerase expression combined with an immune permissive tumor microenvironment are expected to increase the therapeutic potential of telomerase-targeting cancer vaccines. Regardless, rational treatment combinations, such as checkpoint inhibitors, are likely necessary to bring out the true clinical potential of TCVs.


Author(s):  
Akash . ◽  
Mamta Mishra ◽  
M. Hoque ◽  
Amarpal .

Cancer is one of the leading cause of death in human beings throughout the world. Attempts to treat cancer are made but not effectively. Surgical removal, use of radiation therapy, chemotherapy and combination of these therapies have been tried to cure cancer but every therapy had its own side effects. Due to potential side effects, these therapies failed to develop as the permanent cure for cancer. Stem cell transplantation has also been attempted as an alternative but the recovery rate was very low. The most recent therapy, nowadays, to treat cancer is immunotherapy in which utilises the immunity of the patient to get modulated in such a way that cancerous cells get killed. So this review enlightens the eminent immunotherapies used for veterinary patients. T cell checkpoint inhibitors, engineered T cells, cancer vaccines, and anti-B and anti-T cell antibodies are amongst the important immunotherapies used in human as well as veterinary patient. Inhibition of T cell checkpoint molecules, such as PD-1 and CTLA-4, using monoclonal antibodies are the most advanced techniques developed in humans. These significant immunotherapies have achieved notable success against some of the advanced tumors in humans, including melanoma, renal cell carcinoma and non small cell lung cancer. However, a recent clinical trial with a caninized monoclonal antibody against canine PD-L1 showed response in canine melanoma.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 708
Author(s):  
Robert Pytlik ◽  
Kamila Polgarova ◽  
Jana Karolova ◽  
Pavel Klener

Non-Hodgkin lymphomas (NHLs) are lymphoid malignancies of B- or T-cell origin. Despite great advances in treatment options and significant improvement of survival parameters, a large part of NHL patients either present with a chemotherapy-refractory disease or experience lymphoma relapse. Chemotherapy-based salvage therapy of relapsed/refractory NHL is, however, capable of re-inducing long-term remissions only in a minority of patients. Immunotherapy-based approaches, including bispecific antibodies, immune checkpoint inhibitors and genetically engineered T-cells carrying chimeric antigen receptors, single-agent or in combination with therapeutic monoclonal antibodies, immunomodulatory agents, chemotherapy or targeted agents demonstrated unprecedented clinical activity in heavily-pretreated patients with NHL, including chemotherapy-refractory cases with complex karyotype changes and other adverse prognostic factors. In this review, we recapitulate currently used immunotherapy modalities in NHL and discuss future perspectives of combinatorial immunotherapy strategies, including patient-tailored approaches.


2014 ◽  
Vol 369 (1645) ◽  
pp. 20130433 ◽  
Author(s):  
Brian Greenwood

Vaccination has made an enormous contribution to global health. Two major infections, smallpox and rinderpest, have been eradicated. Global coverage of vaccination against many important infectious diseases of childhood has been enhanced dramatically since the creation of WHO's Expanded Programme of Immunization in 1974 and of the Global Alliance for Vaccination and Immunization in 2000. Polio has almost been eradicated and success in controlling measles makes this infection another potential target for eradication. Despite these successes, approximately 6.6 million children still die each year and about a half of these deaths are caused by infections, including pneumonia and diarrhoea, which could be prevented by vaccination. Enhanced deployment of recently developed pneumococcal conjugate and rotavirus vaccines should, therefore, result in a further decline in childhood mortality. Development of vaccines against more complex infections, such as malaria, tuberculosis and HIV, has been challenging and achievements so far have been modest. Final success against these infections may require combination vaccinations, each component stimulating a different arm of the immune system. In the longer term, vaccines are likely to be used to prevent or modulate the course of some non-infectious diseases. Progress has already been made with therapeutic cancer vaccines and future potential targets include addiction, diabetes, hypertension and Alzheimer's disease.


Sign in / Sign up

Export Citation Format

Share Document