scholarly journals Promotion of Colonization and Virulence by Cholera Toxin Is Dependent on Neutrophils

2013 ◽  
Vol 81 (9) ◽  
pp. 3338-3345 ◽  
Author(s):  
Jessica Queen ◽  
Karla J. F. Satchell

ABSTRACTThe innate immune response toVibrio choleraeinfection is poorly understood, but this knowledge is critical for the design of safe, effective vaccines. Using an adult mouse intestinal infection model, this study examines the contribution of neutrophils to host immunity, as well as the effect of cholera toxin and other secreted factors on this response. Depletion of neutrophils from mice with anti-Ly6G IA8 monoclonal antibody led to similar survival rates of mice infected with low or moderate doses of toxigenicV. choleraeEl Tor O1. At a high dose, neutropenic mice showed increased rates of survival compared to neutrophil-replete animals. Expression of cholera toxin was found to be protective to the neutropenic host, and this phenotype can be replicated by the administration of purified toxin. Neutrophils do not effectively clear colonizing bacteria from the small intestine, nor do they alter induction of early immune-modulating signals. In both neutropenic and neutrophil-replete animals, the local response to infection is characterized by expression of interleukin 6 (IL-6), IL-10, and macrophage inflammatory protein 2 alpha (MIP-2). Overall, these data indicate that the innate immune response to toxigenicV. choleraeinfection differs dramatically from the host response to nontoxigenic infection or vaccination, where neutrophils are protective to the host. In the absence of neutrophils, cholera toxin induces immunomodulatory effects that increase host survival. In cholera toxin-producing strains, similar to nontoxigenic infection, accessory toxins are critical to virulence, indicating that cholera toxin and the other secreted toxins modulate the host response by different mechanisms, with both contributing to bacterial persistence and virulence.

2014 ◽  
Vol 82 (12) ◽  
pp. 5214-5222 ◽  
Author(s):  
Tracey A. Day ◽  
John E. Mittler ◽  
Molly R. Nixon ◽  
Cullen Thompson ◽  
Maurine D. Miner ◽  
...  

ABSTRACTThe innate immune response plays an important but unknown role in host defense againstMycobacterium tuberculosis. To define the function of innate immunity during tuberculosis, we evaluatedM. tuberculosisreplication dynamics during murine infection. Our data show that the early pulmonary innate immune response limitsM. tuberculosisreplication in a MyD88-dependent manner. Strikingly, we found that littleM. tuberculosiscell death occurs during the first 2 weeks of infection. In contrast,M. tuberculosiscells deficient in the surface lipid phthiocerol dimycocerosate (PDIM) exhibited significant death rates, and consequently, total bacterial numbers were reduced. Host restriction of PDIM-deficientM. tuberculosiswas not alleviated by the absence of interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), or the phagocyte oxidase subunit p47. Taken together, these data indicate that PDIM protectsM. tuberculosisfrom an early innate host response that is independent of IFN-γ, reactive nitrogen intermediates, and reactive oxygen species. By employing a pathogen replication tracking tool to evaluateM. tuberculosisreplication and death during infection, we identify both host and pathogen factors affecting the outcome of infection.


2013 ◽  
Vol 81 (11) ◽  
pp. 4091-4099 ◽  
Author(s):  
Timo Lischke ◽  
Kira Heesch ◽  
Valéa Schumacher ◽  
Michael Schneider ◽  
Friedrich Haag ◽  
...  

ABSTRACTCD38, adenosine-5′-diphosphate-ribosyl cyclase 1, is a multifunctional enzyme, expressed on a wide variety of cell types. CD38 has been assigned diverse functions, including generation of calcium-mobilizing metabolites, cell activation, and chemotaxis. Using a murineListeria monocytogenesinfection model, we found that CD38 knockout (KO) mice were highly susceptible to infection. Enhanced susceptibility was already evident within 3 days of infection, suggesting a function of CD38 in the innate immune response. CD38 was expressed on neutrophils and inflammatory monocytes, and especially inflammatory monocytes further upregulated CD38 during infection. Absence of CD38 caused alterations of the migration pattern of both cell types to sites of infection. We observed impaired accumulation of cells in the spleen but surprisingly similar or even higher accumulation of cells in the liver. CD38 KO and wild-type mice showed similar changes in the composition of neutrophils and inflammatory monocytes in blood and bone marrow, indicating that mobilization of these cells from the bone marrow was CD38 independent.In vitro, macrophages of CD38 KO mice were less efficient in uptake of listeria but still able to kill the bacteria. Dendritic cells also displayed enhanced CD38 expression following infection. However, absence of CD38 did not impair the capacity of mice to prime CD8+T cells againstL. monocytogenes, and CD38 KO mice could efficiently control secondary listeria infection. In conclusion, our results demonstrate an essential role for CD38 in the innate immune response againstL. monocytogenes.


2007 ◽  
Vol 119 (2) ◽  
pp. 457-463 ◽  
Author(s):  
Byung Eui Kim ◽  
Donald Y.M. Leung ◽  
Joanne E. Streib ◽  
Mark Boguniewicz ◽  
Qutayba A. Hamid ◽  
...  

2020 ◽  
Vol 88 (6) ◽  
Author(s):  
Jenessa A. Winston ◽  
Alissa J. Rivera ◽  
Jingwei Cai ◽  
Rajani Thanissery ◽  
Stephanie A. Montgomery ◽  
...  

ABSTRACT Clostridioides difficile infection (CDI) is associated with increasing morbidity and mortality posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this enteric pathogen. Administration of the secondary bile acid ursodeoxycholic acid (UDCA; ursodiol) inhibits the life cycles of various strains of C. difficile in vitro, suggesting that the FDA-approved formulation of UDCA, known as ursodiol, may be able to restore colonization resistance against C. difficile in vivo. However, the mechanism(s) by which ursodiol is able to restore colonization resistance against C. difficile remains unknown. Here, we confirmed that ursodiol inhibits C. difficile R20291 spore germination and outgrowth, growth, and toxin activity in a dose-dependent manner in vitro. In a murine model of CDI, exogenous administration of ursodiol resulted in significant alterations in the bile acid metabolome with little to no changes in gut microbial community structure. Ursodiol pretreatment resulted in attenuation of CDI pathogenesis early in the course of disease, which coincided with alterations in the cecal and colonic inflammatory transcriptome, bile acid-activated receptors nuclear farnesoid X receptor (FXR) and transmembrane G-protein-coupled membrane receptor 5 (TGR5), which are able to modulate the innate immune response through signaling pathways such as NF-κB. Although ursodiol pretreatment did not result in a consistent decrease in the C. difficile life cycle in vivo, it was able to attenuate an overly robust inflammatory response that is detrimental to the host during CDI. Ursodiol remains a viable nonantibiotic treatment and/or prevention strategy against CDI. Likewise, modulation of the host innate immune response via bile acid-activated receptors FXR and TGR5 represents a new potential treatment strategy for patients with CDI.


2012 ◽  
Vol 80 (11) ◽  
pp. 3892-3899 ◽  
Author(s):  
Azad Eshghi ◽  
Kristel Lourdault ◽  
Gerald L. Murray ◽  
Thanatchaporn Bartpho ◽  
Rasana W. Sermswan ◽  
...  

ABSTRACTPathogenicLeptospiraspp. are likely to encounter higher concentrations of reactive oxygen species induced by the host innate immune response. In this study, we characterizedLeptospira interroganscatalase (KatE), the only annotated catalase found within pathogenicLeptospiraspecies, by assessing its role in resistance to H2O2-induced oxidative stress and during infection in hamsters. PathogenicL. interrogansbacteria had a 50-fold-higher survival rate under H2O2-induced oxidative stress than did saprophyticL. biflexabacteria, and this was predominantly catalase dependent. We also characterized KatE, the only annotated catalase found within pathogenicLeptospiraspecies. Catalase assays performed with recombinant KatE confirmed specific catalase activity, while protein fractionation experiments localized KatE to the bacterial periplasmic space. The insertional inactivation ofkatEin pathogenicLeptospirabacteria drastically diminished leptospiral viability in the presence of extracellular H2O2and reduced virulence in an acute-infection model. Combined, these results suggest thatL. interrogansKatE confersin vivoresistance to reactive oxygen species induced by the host innate immune response.


2012 ◽  
Vol 80 (8) ◽  
pp. 2905-2913 ◽  
Author(s):  
Jessica Queen ◽  
Karla J. Fullner Satchell

ABSTRACTCholera is classically considered a noninflammatory diarrheal disease, in comparison to invasive enteric organisms, although there is a low-level proinflammatory response during early infection withVibrio choleraeand a strong proinflammatory reaction to live attenuated vaccine strains. Using an adult mouse intestinal infection model, this study examines the contribution of neutrophils to host defense to infection. Nontoxigenic El Tor O1V. choleraeinfection is characterized by the upregulation of interleukin-6 (IL-6), IL-10, and macrophage inflammatory protein 2 alpha in the intestine, indicating an acute innate immune response. Depletion of neutrophils from mice with anti-Ly6G IA8 monoclonal antibody led to decreased survival of mice. The role of neutrophils in protection of the host is to limit the infection to the intestine and control bacterial spread to extraintestinal organs. In the absence of neutrophils, the infection spread to the spleen and led to increased systemic levels of IL-1β and tumor necrosis factor alpha, suggesting the decreased survival in neutropenic mice is due to systemic shock. Neutrophils were found not to contribute to either clearance of colonizing bacteria or to alter the local immune response. However, when genes for secreted accessory toxins were deleted, the colonizing bacteria were cleared from the intestine, and this clearance is dependent upon neutrophils. Thus, the requirement for accessory toxins in virulence is negated in neutropenic mice, which is consistent with a role of accessory toxins in the evasion of innate immune cells in the intestine. Overall, these data support that neutrophils impact disease progression and suggest that neutrophil effectiveness can be manipulated through the deletion of accessory toxins.


2019 ◽  
Vol 87 (4) ◽  
Author(s):  
Talib Alboslemy ◽  
Bing Yu ◽  
Tara Rogers ◽  
Min-Ho Kim

ABSTRACT Staphylococcus aureus infections associated with the formation of biofilms on medical implants or host tissue play a critical role in the persistence of chronic infections. One critical mechanism of biofilm infection that leads to persistent infection lies in the capacity of biofilms to evade the macrophage-mediated innate immune response. It is now increasingly apparent that microorganisms exploit the negative regulatory mechanisms of the pattern recognition receptor (PRR)-mediated inflammatory response to subvert host cell functions by using various virulence factors. However, the detailed molecular mechanism, along with the identity of a target molecule, underlying the evasion of the macrophage-mediated innate immune response against S. aureus infection associated with biofilm formation remains to be elucidated. Here, using an in vitro culture model of murine macrophage-like RAW 264.7 cells, we demonstrate that S. aureus biofilm-conditioned medium significantly attenuated the capacity for macrophage bactericidal and proinflammatory responses. Importantly, the responses were associated with attenuated activation of NF-κB and increased expression of Kruppel-like factor 2 (KLF2) in RAW 264.7 cells. Small interfering RNA (siRNA)-mediated silencing of KLF2 in RAW 264.7 cells could restore the activation of NF-κB toward the bactericidal activity and generation of proinflammatory cytokines in the presence of S. aureus biofilm-conditioned medium. Collectively, our results suggest that factors secreted from S. aureus biofilms might exploit the KLF2-dependent negative regulatory mechanism to subvert macrophage-mediated innate immune defense against S. aureus biofilms.


2008 ◽  
Vol 76 (3) ◽  
pp. 978-985 ◽  
Author(s):  
Paul Sumby ◽  
Shizhen Zhang ◽  
Adeline R. Whitney ◽  
Fabiana Falugi ◽  
Guido Grandi ◽  
...  

ABSTRACT Circumvention of the host innate immune response is critical for bacterial pathogens to infect and cause disease. Here we demonstrate that the group A Streptococcus (GAS; Streptococcus pyogenes) protease SpyCEP (S. pyogenes cell envelope protease) cleaves granulocyte chemotactic protein 2 (GCP-2) and growth-related oncogene alpha (GROα), two potent chemokines made abundantly in human tonsils. Cleavage of GCP-2 and GROα by SpyCEP abrogated their abilities to prime neutrophils for activation, detrimentally altering the innate immune response. SpyCEP expression is negatively regulated by the signal transduction system CovR/S. Purified recombinant CovR bound the spyCEP gene promoter region in vitro, indicating direct regulation. Immunoreactive SpyCEP protein was present in the culture supernatants of covR/S mutant GAS strains but not in supernatants from wild-type strains. However, wild-type GAS strains do express SpyCEP, where it is localized to the cell wall. Strain MGAS2221, an organism representative of the highly virulent and globally disseminated M1T1 GAS clone, differed significantly from its isogenic spyCEP mutant derivative strain in a mouse soft tissue infection model. Interestingly, and in contrast to previous studies, the isogenic mutant strain generated lesions of larger size than those formed following infection with the parent strain. The data indicate that SpyCEP contributes to GAS virulence in a strain- and disease-dependent manner.


2015 ◽  
Vol 89 (15) ◽  
pp. 7550-7566 ◽  
Author(s):  
Nicole B. Glennon ◽  
Omar Jabado ◽  
Michael K. Lo ◽  
Megan L. Shaw

ABSTRACTBats are important reservoirs for several viruses, many of which cause lethal infections in humans but have reduced pathogenicity in bats. As the innate immune response is critical for controlling viruses, the nature of this response in bats and how it may differ from that in other mammals are of great interest. Using next-generation transcriptome sequencing (mRNA-seq), we profiled the transcriptional response ofPteropus vampyrusbat kidney (PVK) cells to Newcastle disease virus (NDV), an avian paramyxovirus known to elicit a strong innate immune response in mammalian cells. ThePteropusgenus is a known reservoir of Nipah virus (NiV) and Hendra virus (HeV). Analysis of the 200 to 300 regulated genes showed that genes for interferon (IFN) and antiviral pathways are highly upregulated in NDV-infected PVK cells, including genes for beta IFN, RIG-I, MDA5, ISG15, and IRF1. NDV-infected cells also upregulated several genes not previously characterized to be antiviral, such as RND1, SERTAD1, CHAC1, and MORC3. In fact, we show that MORC3 is induced by both IFN and NDV infection in PVK cells but is not induced by either stimulus in human A549 cells. In contrast to NDV infection, HeV and NiV infection of PVK cells failed to induce these innate immune response genes. Likewise, an attenuated response was observed in PVK cells infected with recombinant NDVs expressing the NiV IFN antagonist proteins V and W. This study provides the first global profile of a robust virus-induced innate immune response in bats and indicates that henipavirus IFN antagonist mechanisms are likely active in bat cells.IMPORTANCEBats are the reservoir host for many highly pathogenic human viruses, including henipaviruses, lyssaviruses, severe acute respiratory syndrome coronavirus, and filoviruses, and many other viruses have also been isolated from bats. Viral infections are reportedly asymptomatic or heavily attenuated in bat populations. Despite their ecological importance to viral maintenance, research into their immune system and mechanisms for viral control has only recently begun. Nipah virus and Hendra virus are two paramyxoviruses associated with high mortality rates in humans and whose reservoir is thePteropusgenus of bats. Greater knowledge of the innate immune response ofP. vampyrusbats to viral infection may elucidate how bats serve as a reservoir for so many viruses.


Sign in / Sign up

Export Citation Format

Share Document