scholarly journals B Cell Presentation of Chlamydia Antigen Selects Out Protective CD4γ13 T Cells: Implications for Genital Tract Tissue-Resident Memory Lymphocyte Clusters

2017 ◽  
Vol 86 (2) ◽  
Author(s):  
Raymond M. Johnson ◽  
Hong Yu ◽  
Norma Olivares Strank ◽  
Karuna Karunakaran ◽  
Ying Zhu ◽  
...  

ABSTRACTSurveillance and defense of the enormous mucosal interface with the nonsterile world are critical to protecting the host from a wide range of pathogens.Chlamydia trachomatisis an intracellular bacterial pathogen that replicates almost exclusively in the epithelium of the reproductive tract. The fallopian tubes and vagina are poorly suited to surveillance and defense, with limited immune infrastructure positioned near the epithelium. However, a dynamic process during clearing primary infections leaves behind new lymphoid clusters immediately beneath the epithelium. These memory lymphocyte clusters (MLCs) harboring tissue-resident memory (Trm) T cells are presumed to play an important role in protection from subsequent infections. Histologically, humanChlamydiaMLCs have prominent B cell populations. We investigated the status of genital tract B cells duringC. muridaruminfections and the nature of T cells recovered from immune mice using immune B cells as antigen-presenting cells (APCs). These studies revealed a genital tract plasma B cell population and a novel genital tract CD4 T cell subset producing both gamma interferon (IFN-γ) and interleukin-13 (IL-13). A panel of CD4 T cell clones and microarray analysis showed that the molecular fingerprint of CD4γ13 T cells includes a Trm-like transcriptome. Adoptive transfer of aChlamydia-specific CD4γ13 T cell clone completely prevented oviduct immunopathology without accelerating bacterial clearance. Existence of a CD4γ13 T cell subset provides a plausible explanation for the observation that human peripheral blood mononuclear cell (PBMC)Chlamydia-specific IFN-γ and IL-13 responses predict resistance to reinfection.

2018 ◽  
Vol 86 (7) ◽  
pp. e00143-18 ◽  
Author(s):  
Taylor B. Poston ◽  
Catherine M. O'Connell ◽  
Jenna Girardi ◽  
Jeanne E. Sullivan ◽  
Uma M. Nagarajan ◽  
...  

ABSTRACTCD4 T cells and antibody are required for optimal acquired immunity toChlamydia muridarumgenital tract infection, and T cell-mediated gamma interferon (IFN-γ) production is necessary to clear infection in the absence of humoral immunity. However, the role of T cell-independent immune responses during primary infection remains unclear. We investigated this question by inoculating wild-type and immune-deficient mice withC. muridarumCM001, a clonal isolate capable of enhanced extragenital replication. Genital inoculation of wild-type mice resulted in transient dissemination to the lungs and spleen that then was rapidly cleared from these organs. However, CM001 genital infection proved lethal forSTAT1−/−andIFNG−/−mice, in which IFN-γ signaling was absent, and forRag1−/−mice, which lacked T and B cells and in which innate IFN-γ signaling was retained. In contrast, B cell-deficient muMT mice, which can generate a Th1 response, and T cell-deficient mice with intact B cell and innate IFN-γ signaling survived. These data collectively indicate that IFN-γ prevents lethal CM001 dissemination in the absence of T cells and suggests a B cell corequirement. Adoptive transfer of convalescent-phase immune serum but not naive IgM toRag1−/−mice infected with CM001 significantly increased the survival time, while transfer of naive B cells completely rescuedRag1−/−mice from CM001 lethality. Protection was associated with a significant reduction in the lung chlamydial burden of genitally infected mice. These data reveal an important cooperation between T cell-independent B cell responses and innate IFN-γ in chlamydial host defense and suggest that interactions between T cell-independent antibody and IFN-γ are essential for limiting extragenital dissemination.


2018 ◽  
Author(s):  
Shuhao Zhang ◽  
Shyamal Goswami ◽  
Jiaqiang Ma ◽  
Lu Meng ◽  
Youping Wang ◽  
...  

1983 ◽  
Vol 158 (3) ◽  
pp. 649-669 ◽  
Author(s):  
H Kawanishi ◽  
L Saltzman ◽  
W Strober

Our previous studies indicated that cloned T cells obtained from Peyer's patches (PP) (Lyt-1+, 2-, Ia+, and H-2K/D+) evoked immunoglobulin (Ig) class switching of PP B cells from sIgM to sIgA cells in vitro; however, these switch T cells could not in themselves provide optimal help for the differentiation of postswitch sIgA-bearing PP B cells to IgA-secreting cells. Thus, in the present report we described studies focused on mechanisms regulating terminal differentiation of the postswitch PP sIgA-bearing B cells. First, to explore the effect of T cell-derived B cell differentiation factor(s) (BCDF) and macrophage factor(s) (MF) on the terminal maturation of PP B cells, LPS-stimulated PP B cells were co-cultured for 7 d with cloned T cells in the presence or absence of the above factors. In the absence of PP cloned T cells the BCDF and MF had only a modest effect on IgA production, whereas in the presence of PP, but not spleen cloned T cells, IgA production was increased. Next, to investigate the effect of T cells derived from a gut-associated lymphoid tissue (GALT), mesenteric lymph nodes (MLN), as well as from spleen on terminal differentiation of postswitch sIgA PP B cells, LPS-driven PP B cells were precultured with the cloned T cells to induce a switch to sIgA, and subsequently cultured with MLN or spleen T cells or a Lyt-2+-depleted T cell subset in the presence of a T-dependent polyclonal mitogen, staphylococcal protein A. Alternatively, in the second culture period BCDF alone was added, instead of T cells and protein A. Here it was found that B cells pre-exposed to switch T cells from PP, but not spleen, were induced to produce greatly increased amounts of IgA in the presence of protein A and T cells or a Lyt-2+-depleted T cell subset as well as in the presence of BCDF alone. Furthermore, in the presence of BCDF alone many B cells expressed cytoplasmic IgA. These observations strongly support the view that the terminal differentiation of postswitch sIgA B cells is governed by helper T cells and macrophages, or factors derived from such cells. Such cells or factors do not affect preswitch B cells.


1989 ◽  
Vol 170 (5) ◽  
pp. 1477-1493 ◽  
Author(s):  
R H DeKruyff ◽  
T Turner ◽  
J S Abrams ◽  
M A Palladino ◽  
D T Umetsu

We have analyzed in detail the precise requirements for the induction of human IgE synthesis using several experimental approaches with purified B cells and well-characterized alloantigen-specific CD4+ T cell clones expressing different profiles of lymphokine secretion. Using these clones under cognate conditions in which the B cells expressed alloantigens recognized by the cloned T cells, we have confirmed that IL-4 is required for the induction of IgE synthesis, but we have clearly demonstrated that IL-4 by itself is not sufficient. With several cloned CD4+ T cell lines, including an IL-4-producing clone that could not induce IgE synthesis, and cloned T cells pretreated with cyclosporin A to inhibit lymphokine synthesis, we showed that Th cell-B cell interactions are necessary for IgE synthesis, and that low molecular weight B cell growth factor (LMW-BCGF) and IL-4, in combination, are lymphokines of major importance in the induction of IgE synthesis. Together our results indicate that optimal induction of an IgE-specific response requires the exposure of B cells to a particular complex of signals that include (a) a signal(s) involving Th-B cell interaction that primes B cells to receive additional signals from soluble lymphokines, (b) a specific B cell proliferative signal provided by LMW-BCGF, and (c) a specific B cell differentiation signal provided by IL-4.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Jennifer D. Helble ◽  
Rodrigo J. Gonzalez ◽  
Ulrich H. von Andrian ◽  
Michael N. Starnbach

ABSTRACT While there is no effective vaccine against Chlamydia trachomatis infection, previous work has demonstrated the importance of C. trachomatis-specific CD4+ T cells (NR1 T cells) in pathogen clearance. Specifically, NR1 T cells have been shown to be protective in mice, and this protection depends on the host’s ability to sense the cytokine gamma interferon (IFN-γ). However, it is unclear what role NR1 production or sensing of IFN-γ plays in T cell homing to the genital tract or T cell-mediated protection against C. trachomatis. Using two-photon microscopy and flow cytometry, we found that naive wild-type (WT), IFN-γ−/−, and IFN-γR−/− NR1 T cells specifically home to sections in the genital tract that contain C. trachomatis. We also determined that protection against infection requires production of IFN-γ from either NR1 T cells or endogenous cells, further highlighting the importance of IFN-γ in clearing C. trachomatis infection. IMPORTANCE Chlamydia trachomatis is an important mucosal pathogen that is the leading cause of sexually transmitted bacterial infections in the United States. Despite this, there is no vaccine currently available. In order to develop such a vaccine, it is necessary to understand the components of the immune response that can lead to protection against this pathogen. It is well known that antigen-specific CD4+ T cells are critical for Chlamydia clearance, but the contexts in which they are protective or not protective are unknown. Here, we aimed to characterize the importance of gamma interferon production and sensing by T cells and the effects on the immune response to C. trachomatis. Our work here helps to define the contexts in which antigen-specific T cells can be protective, which is critical to our ability to design an effective and protective vaccine against C. trachomatis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2668-2668
Author(s):  
Abdul Tawab ◽  
Yoshiyuki Takahashi ◽  
Childs Richard ◽  
Kurlander J. Roger

Abstract In vitro stimulation of human peripheral blood B cells with recombinant IL-4 and CD40 ligand (CD40L) markedly increases their expression of MHC and costimulatory molecules, thus enhancing antigenic peptide presentation to T cells. Because these cells proliferate extensively in vitro (unlike monocytes or dendritic cells), they represent a promising and convenient reagent for the generation and maintenance of antigen-specific T cells for use in a variety of experimental or therapeutic settings. However, the impact of this type of B cell APC on cytokine production by responder T cells has hitherto not been examined. To address this issue, we stimulated normal human T cells with either allogeneic B cells (generated in vitro) or with MNCs obtained from the same donor. After 7 days, T cells were washed and re-challenged with the same APCs. The resulting alloreactive cytokine response was measured using quantitative ELISPOT methods and expressed as the frequencies of IFN-γ, IL-4, and IL-5 producing cells per thousand responder cells added. B cell- and MNC-primed cell lines both produced vigorous lymphokine responses, but B cell-stimulated T cells consistently produced more IL-5 spots (mean of 265 vs. 98/1000 responders, p<0.002) and fewer IFN-γ spots (163 vs 386/1000 cells, p<0.005) than MNC-stimulated cells. Further, the ratio of IFN-γ to IL-5 spots was almost ten-fold lower in B cell-stimulated cultures compared to MNC-induced cultures (0.67 vs. 5.2, p<0.001). ELISPOT studies assessing the ratio of IFN-γ to IL-4 spots and ELISA assays comparing IFN-γ and IL-5 levels from culture supernatants demonstrated the same pattern of marked type 2 skewing by B cells. This pattern was unaffected by the presence of anti-IL-4 antibody suggesting type 2 skewing was not mediated by IL-4. Cytokine skewing produced by B cells or MNC could be partially reversed by swapping MNC and B cells during re-stimulation on day 7, but this plasticity was markedly reduced after 3 (weekly) cycles of B cell or MNC re-stimulation in vitro. Type 2 skewing by B cells was enhanced when monocytes were removed from responder T cell populations by either depleting CD14+ positive cells or by positive selection of T cells prior to stimulation. In contrast, type 2 polarization could be prevented using recombinant IL-12. Not all cells of B-cell origin share the same propensity to type 2 skewing observed with IL-4/CD40L-stimulated B cells; under identical conditions, EBV-transformed B cells stimulated alloimmune T cells to produce a strong type 1 cytokine response comparable to that produced by MNCs. In summary, IL-4/CD40L-stimulated B cells strongly promote a type 2 T cell response during primary alloimmune challenge; this skewing can become fixed after repeated B cell stimulation. Investigators using these cells as APC should be aware of this potential phenomenon, particularly during primary T cell responses. It is also important to consider the factors described above that may exacerbate or ameliorate this effect.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3905-3905
Author(s):  
Sakura Hosoba ◽  
Christopher R. Flowers ◽  
Catherine J Wu ◽  
Jens R. Wrammert ◽  
Edmund K. Waller

Abstract Introduction: Rituximab (R) administration results in depletion of blood B cells and suppression of B cell reconstitution for several months after, with suggestions that T cell reconstitution may also be impaired. We hypothesized that pre-transplant R would be associated with delayed B and T cell reconstitution after allo-HSCT compared with non-R-treated allo-HSCT recipients. Methods: We conducted a retrospective analysis of 360 patients who underwent allo-HSCT using BM or G-CSF mobilized PB. Recipients of cord blood, T cell depleted grafts and 2nd allo-HSCT were excluded. Analysis of lymphocyte subsets in at least one blood at 1, 3, 6, 12, and 24 months post-allo-HSCT was available for 255 eligible patients. Data on lymphocyte recovery was censored after DLI or post-transplant R therapy. Post-HSCT lymphocyte recovery in 217 patients who never received R (no-R) was compared to 38 patients who had received R before allo-HSCT (+R) including 12 CLL, 19 NHL, and 7 B-cell ALL patients. +R patients received a median of 9 doses of R with the last dose of R at a median of 45 days pre-transplant. Results: Mean lymphocyte numbers in the blood at 1, 3, 6, 12, and 24 months were B-cells: 55 ± 465/µL, 82 ± 159/µL, 150 ± 243/µL, 255 ± 345/µL, and 384 ± 369/µL (normal range 79-835); and T-cells: 65 ± 987/µL, 831 ± 667/µL, 1058 ± 788/µL, 1291 ± 985/µL, and 1477 ± 1222/µL (normal range 675-3085). Lymphocyte reconstitution kinetics did not vary significantly based upon the intensity of the conditioning regimen or related vs. unrelated donors allowing aggregation of patients in the +R and no-R groups (Figure). B cell reconstitution in the +R patients was higher at 1 month post-allo-HSCT (relative value of 143% p=0.008) and lower at 3 months post-transplant (19.2%, p=0.069) compared to no-R patients. Blood B cells in the +R group rebounded by the 6th month post-allo-HSCT and remained higher than the no-R group through the 24th month post-HSCT (197% at the 6th month, p=0.037). Higher levels of B-cells at 1 month in the +R group was due to higher blood B-cells at 1 month post-HSCT among 12 CLL patients compared with no-R patients (423%, p<0.001; Figure), while B-cell counts in the remaining +R patients (B-cell NHL and B-cell ALL) were lower than the no-R patients at both 1 and 3 months. Reconstitution of CD4+ and CD8+ T cells among +R patients were similar to no-R patients in the first month post-allo-HSCT and then rebounded to higher levels than the no-R group of patients (relative value 194%, p=0.077 at the 24th month for CD4+ T cell subset, and 224%, p=0.020 for CD8+ T cell subset; Figure). CLL patients had a striking increase in blood levels of donor-derived CD4+ and CD8+ T cells at 3 months post-transplant concomitant with the disappearance of blood B cells compared with no-R patients (relative value of 178% and 372%, p=0.018 and p=0.003, respectively; Figure). Long term T cell reconstitution remained higher for +R patients compared with no-R patients, even when CLL patients were excluded (relative value of 203%, p=0.005 at 24 months post-HSCT; Figure). Conclusions: We observed higher levels of blood B cells and T cells ³ 6 months post-allo-HSCT in +R patients compared with no-R patients. B cell recovery at 6 months post-transplant is consistent with clearance of residual plasma R given the 1-2 months half-life of R, and the median of 1.5 months between the last dose of R and allo-HSCT. The increased blood CD8+ T cells in the blood of CLL patients at 3 months post-allo-HSCT associated with clearance of the B-cells seen 1 month post-HSCT is consistent with a donor T cell-mediated GVL effect. Pre-transplant R therapy does not appear to have any long-term deleterious effect on immune reconstitution, indicating that post-allo-HSCT vaccination at ≥6 months may be efficacious. Figure: Kinetics of lymphocyte reconstitution after allo-HSCT varied by history of pre-transplant R administration and primary disease. Panels show mean counts of each lymphocyte subset at 1, 3, 6, 12 and 24 months post-allo-HSCT for: (1) B cell, (2) T cell, (3) CD4+ and (4) CD8+ T cells. Solid lines with triangle show no-R group; dashed lines with circles shows subgroups of CLL and NHL/ALL +R patients. Asterisks show p values from t-test of the comparison between CLL +R or the NHL/ALL +R patients with no-R patients. *p<0.05; ** p<0.01; *** p<0.001. Figure:. Kinetics of lymphocyte reconstitution after allo-HSCT varied by history of pre-transplant R administration and primary disease. Panels show mean counts of each lymphocyte subset at 1, 3, 6, 12 and 24 months post-allo-HSCT for: (1) B cell, (2) T cell, (3) CD4+ and (4) CD8+ T cells. Solid lines with triangle show no-R group; dashed lines with circles shows subgroups of CLL and NHL/ALL +R patients. Asterisks show p values from t-test of the comparison between CLL +R or the NHL/ALL +R patients with no-R patients. *p<0.05; ** p<0.01; *** p<0.001. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 74 (10) ◽  
pp. 5903-5913 ◽  
Author(s):  
Masashi Emoto ◽  
Izumi Yoshizawa ◽  
Yoshiko Emoto ◽  
Mamiko Miamoto ◽  
Robert Hurwitz ◽  
...  

ABSTRACT The phenotypic and functional changes of glycolipid presented by CD1d(glycolipid/CD1d) specific Vα14+ T cells in the liver of mice at early stages of bacterial infection were investigated. After Listeria monocytogenes infection or interleukin-12 (IL-12) treatment, α-galactosylceramide/CD1d tetramer-reactive (α-GalCer/CD1d+) T cells coexpressing natural killer (NK) 1.1 marker became undetectable and, concomitantly, cells lacking NK1.1 emerged in both euthymic and thymectomized animals. Depletion of the NK1.1+ subpopulation prevented the emergence of α-GalCer/CD1d+ NK1.1− T cells. Before infection, NK1.1+, rather than NK1.1−, α-GalCer/CD1d+ T cells coexpressing CD4 were responsible for IL-4 production, whereas gamma interferon (IFN-γ) was produced by cells regardless of NK1.1 or CD4 expression. After infection, IL-4-secreting cells became undetectable among α-GalCer/CD1d+ T cells, but considerable numbers of IFN-γ-secreting cells were found among NK1.1−, but not NK1.1+, cells lacking CD4. Thus, NK1.1 surface expression and functional activities of Vα14+ T cells underwent dramatic changes at early stages of listeriosis, and these alterations progressed in a thymus-independent manner. In mutant mice lacking all α-GalCer/CD1d+ T cells listeriosis was ameliorated, suggesting that the subtle contribution of the NK1.1− T-cell subset to antibacterial protection is covered by more profound detrimental effects of the NK1.1+ T-cell subset.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2224-2234
Author(s):  
JS Duke-Cohan ◽  
C Morimoto ◽  
SF Schlossman

We have developed a bispecific antibody that recognizes the CD4 and CD26 antigens simultaneously and that was examined for its ability to target CD4+CD26+T cells. These latter cells constitute the activated component of the CD4+ CD29highCD45RO+ memory T-cell subset that provides help for B-cell Ig synthesis and help for responses against recall antigens. The purified bispecific antibody exhibited an estimated dissociation constant (kd) of 2.4 x 10(-9) mol/L, on comparison with 1.1 x 10(-9) mol/L for anti-CD26, and 1.6 x 10(-10) mol/L for anti-CD4. Surface plasmon resonance was used to show the bifunctional capacity of the antibody. On binding 125I-bispecific antibody to phytohemagglutinin (PHA)-activated T cells, 54.4% of the bound antibody was internalized. This was the result of bispecific binding, because monovalent fragments of anti-CD4 and anti-CD26 were not able to modulate antigen or induce internalization using both a fluorescent assay and an 125I-internalization assay. The ability of the bispecific antibody to be internalized was used to deliver a toxin, blocked ricin, specifically to cells that are CD4+CD26+. The inability of monovalent fragments to be internalized formed the basis for our hypothesis that monovalent binding by the bispecific immunotoxin would not result in internalization. Against resting E+ T cells, the bispecific immunotoxin developed a minimal effect. On preactivating the same cells, using phorbol myristate acetate (PMA)/ionomycin on concanavalin A (ConA) or especially PHA, levels of CD26 were upregulated and the immunotoxin effectively inhibited the ability to provide help for B-cell Ig synthesis while leaving intact the CD4-CD26+ and CD4+CD26- populations; an effect observed both functionally and by phenotype. The bispecific antibody proved to be most effective at inhibiting a heterologous mixed leukocyte reaction. We propose that this reagent may form the basis for the rational design of toxins designed to modulate activated T cells from, or directed against, tissue grafts.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2085-2085
Author(s):  
Rao H Prabhala ◽  
Srikanth Talluri ◽  
Megan Stekla ◽  
Andreea Negroiu ◽  
Michael Buonopane ◽  
...  

Abstract One of the most prominent features of multiple myeloma (MM) has been immune deficiency which predisposes patients to infectious complications and suppresses development of anti-MM immune responses. We and others have previously described the T cell dysfunction in Th1, Treg and Th17 cells, plasmacytoid dendritic cells and myeloid-derived suppressor cells (MDSC). However, the most fundamental and long identified deficiency is in the humoral immune response. Suppression of uninvolved immunoglobulins (UIgs) have been well described (i.e. suppression of serum IgA and IgM in IgG myeloma); and antibody responses to vaccination have been inadequate. However, very limited information is available regarding B cell function and how UIgs are suppressed in myeloma. We have now evaluated six different B cell subsets (B1a, B1b, B2, Breg, IRA-B, and MZ) in peripheral blood (PBMC) and bone marrow (BM) to understand alterations in B cell immune function in MM. We have observed significantly lower ratio of B2 (normal B cell-subset) and B1a (natural antibody-producing cells) subsets (10±4 vs 57±17; p < 0.05) and B2 and Breg (regulatory B cell-subset) subsets (14±4 vs 45±13; p< 0.05) in PBMC from MM patients (N=19) compared with healthy donor (N=33) respectively. Similar results were observed in BM samples from MM patients (N=18) compared with healthy donors (N=12); B2/B1a subset (2.4±0.6 vs 8±1.3; p < 0.05) and B2/Breg subset (8±1.4 vs 43.7±8.4; p< 0.05) respectively. To understand whether MM cells directly or indirectly alter B cell-subsets, we incubated myeloma cells (N=4) with healthy donor PBMCs, and analyzed B cell subsets after 3 days. We observed significant elevation in B1 subset (2.5 fold of control) and reduced B2 subset (89±3% of control). When we incubated PBMCs with IL-17A over-expressing MM cells (N=3), we observed further significant reduction in B2 subset (74% of control). When normal PBMCs are cultured in IL-17A (N=4) we observed significantly increased IL-10-producing Breg subset (28% of control). Similarly, co-culture of healthy B cells with MDSC led to significant increase (3.8 times) in Breg cell- population (N=3) compared with control group. To study the impact of B cell dysfunction on T cell function in MM, we activated normal PBMC via anti-CD3 antibody, in the presence or absence of B cells, and measured intra-cellular IFN-γ levels in CD69+ cells. We observed that the absence of B cells significantly inhibited interferon-producing T cells compared to control (by 43%; p<0.05). Importantly, following removal of CD25+ cells (Tregs and activated memory T cells), with or without B cells, we did not observe any difference in the inhibition of IFN-γ, indicating that B cells influence memory T cells rather than naïve T cells for the production of IFN-γ. To evaluate impact of lenalidomide on this interaction, we stimulated purified normal donor CD45RO memory T cells with Th1 polarizing cocktail in the presence or absence of purified normal B cells or B cells from MM patient (MM-B) in presence of lenalidomide and observed thatlenalidomide significantly improved MM-B cell-mediated IFN-γ-producing Th1 responses (by 32%, p<0.05) compared to normal B cell-mediated Th1 responses. In an effort to evaluate whether any therapy may improve the B cell function, we cultured normal PBMCs in the presence of lenalidomide (N=9) and observed reduction in Breg subset by 40% of control. To evaluate the effect of therapy on B cell-subsets in MM, we analyzed B cell subsets in PBMC from newly-diagnosed and lenalidomide-treated MM patients and observed that lenalidomide-treated group showed significant (p<0.05) improvement in B cell subsets (increased B2 and lower B1 cells) even before clinical response. These results suggest that immunomodulatory agents may be able to re-program humoral immunity in these patients. In summary, we report that the myeloma cell driven skewed B cell subset distribution with consequent B cell dysfunction drives the observed abnormalities in humoral/cell mediated immunity. The current therapeutic interventions, besides providing deep clinical responses, may also improve B cell function with impact on long term outcome. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document