scholarly journals LT-IIc, a New Member of the Type II Heat-Labile Enterotoxin Family Encoded by an Escherichia coli Strain Obtained from a Nonmammalian Host

2010 ◽  
Vol 78 (11) ◽  
pp. 4705-4713 ◽  
Author(s):  
Hesham F. Nawar ◽  
Natalie D. King-Lyons ◽  
John C. Hu ◽  
Raymond C. Pasek ◽  
Terry D. Connell

ABSTRACT Two families of bacterial heat-labile enterotoxins (HLTs) have been described: the type I HLTs are comprised of cholera toxin (CT) of Vibrio cholerae, LT-I of Escherichia coli, and several related HLTs; the type II HLTs are comprised of LT-IIa and LT-IIb. Herein, we report LT-IIc, a new type II HLT encoded from an enterotoxigenic E. coli (ETEC) strain isolated from an avian host. Using a mouse Y1 adrenal cell bioassay, LT-IIc was shown to be less cytotoxic than CT, LT-IIa, or LT-IIb. Cytotoxicity of LT-IIc was partially neutralized by antisera recognizing LT-IIa or LT-IIb but not by anti-CT antiserum. Genes encoding putative A polypeptide and B polypeptides of LT-IIc were arranged in an operon which was flanked by potential prophage sequences. Analysis of the nucleotide and predicted amino acid sequences demonstrated that the A polypeptide of LT-IIc has moderate homology to the A polypeptides of CT and LT-I and high homology to the A polypeptides of LT-IIa and LT-IIb. The B polypeptide of LT-IIc exhibited no significant homology to the B polypeptides of CT and LT-I and only moderate homology to the B polypeptides of LT-IIa and LT-IIb. The binding pattern of LT-IIc for gangliosides was distinctive from that of either LT-IIa or LT-IIb. The data suggest that other types of the type II HLT subfamily are circulating in the environment and that host specificity of type II HLT is likely governed by changes in the B polypeptide which mediate binding to receptors.

2016 ◽  
Vol 473 (21) ◽  
pp. 3923-3936 ◽  
Author(s):  
Dani Zalem ◽  
João P. Ribeiro ◽  
Annabelle Varrot ◽  
Michael Lebens ◽  
Anne Imberty ◽  
...  

The structurally related AB5-type heat-labile enterotoxins of Escherichia coli and Vibrio cholerae are classified into two major types. The type I group includes cholera toxin (CT) and E. coli LT-I, whereas the type II subfamily comprises LT-IIa, LT-IIb and LT-IIc. The carbohydrate-binding specificities of LT-IIa, LT-IIb and LT-IIc are distinctive from those of cholera toxin and E. coli LT-I. Whereas CT and LT-I bind primarily to the GM1 ganglioside, LT-IIa binds to gangliosides GD1a, GD1b and GM1, LT-IIb binds to the GD1a and GT1b gangliosides, and LT-IIc binds to GM1, GM2, GM3 and GD1a. These previous studies of the binding properties of type II B-subunits have been focused on ganglio core chain gangliosides. To further define the carbohydrate binding specificity of LT-IIb B-subunits, we have investigated its binding to a collection of gangliosides and non-acid glycosphingolipids with different core chains. A high-affinity binding of LT-IIb B-subunits to gangliosides with a neolacto core chain, such as Neu5Gcα3- and Neu5Acα3-neolactohexaosylceramide, and Neu5Gcα3- and Neu5Acα3-neolactooctaosylceramide was detected. An LT-IIb-binding ganglioside was isolated from human small intestine and characterized as Neu5Acα3-neolactohexaosylceramide. The crystal structure of the B-subunit of LT-IIb with the pentasaccharide moiety of Neu5Acα3-neolactotetraosylceramide (Neu5Ac-nLT: Neu5Acα3Galβ4GlcNAcβ3Galβ4Glc) was determined providing the first information for a sialic-binding site in this subfamily, with clear differences from that of CT and LT-I.


2006 ◽  
Vol 75 (2) ◽  
pp. 621-633 ◽  
Author(s):  
Hesham F. Nawar ◽  
Sergio Arce ◽  
Michael W. Russell ◽  
Terry D. Connell

ABSTRACT The structure and function LT-IIa, a type II heat-labile enterotoxin of Escherichia coli, are closely related to the structures and functions of cholera toxin and LT-I, the type I heat-labile enterotoxins of Vibrio cholerae and enterotoxigenic Escherichia coli, respectively. While LT-IIa is a potent systemic and mucosal adjuvant, recent studies demonstrated that mutant LT-IIa(T34I), which exhibits no detectable binding activity as determined by an enzyme-linked immunosorbent assay, with gangliosides GD1b, GD1a, and GM1 is a very poor adjuvant. To evaluate whether other mutant LT-IIa enterotoxins that also exhibit diminished ganglioside-binding activities have greater adjuvant activities, BALB/c mice were immunized by the intranasal route with the surface adhesin protein AgI/II of Streptococcus mutans alone or in combination with LT-IIa, LT-IIa(T14S), LT-IIa(T14I), or LT-IIa(T14D). All three mutant enterotoxins potentiated strong mucosal immune responses that were equivalent to the response promulgated by wt LT-IIa. All three mutant enterotoxins augmented the systemic immune responses that correlated with their ganglioside-binding activities. Only LT-IIa and LT-IIa(T14S), however, enhanced expression of major histocompatibility complex class II and the costimulatory molecules CD40, CD80, and CD86 on splenic dendritic cells. LT-IIa(T14I) and LT-IIa(T14D) had extremely diminished toxicities in a mouse Y1 adrenal cell bioassay and reduced abilities to induce the accumulation of intracellular cyclic AMP in a macrophage cell line.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Haixiu Wang ◽  
Raquel Sanz Garcia ◽  
Eric Cox ◽  
Bert Devriendt

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) strains are important pathogens for humans and farm animals such as pigs. Porcine ETEC strains induce diarrhea through the production of heat-labile enterotoxin (LT) and/or heat-stable enterotoxins (pSTa/STb). Although LT secretion levels differ between porcine ETEC strains, and this has been linked to virulence, it is unclear whether ST secretion levels also differ between porcine ETEC strains. In addition, the molecular mechanism underlying different LT secretion levels has not been elucidated. In this work, multiple porcine ETEC strains were assessed for their capacity to produce and secrete the enterotoxins LT, pSTa, and STb. The strains differed greatly in their capacity to secrete LT, pSTa, and STb. Remarkably, in some strains, periplasmic production did not correlate with their ability to secrete LT, resulting in high periplasmic production and low LT secretion levels. Furthermore, the results indicated that the type II secretion system (T2SS) protein YghG plays a regulatory role in controlling LT secretion levels. These findings highlight YghG as an important mediator of the secretion of the heat-labile enterotoxin LT by porcine ETEC strains and provide better insights into ETEC enterotoxin secretion. IMPORTANCE Enterotoxigenic E. coli strains are a major health concern. Enterotoxins secreted by enterotoxigenic E. coli are crucial for diarrhea induction. Enterotoxin secretion levels differ between strains; however, it is currently unclear what drives these differences. The discrepancy in the production and secretion capacities of enterotoxins in ETEC is important to clarify their function involved in diarrhea induction. Our results further deepen our understanding of how type II secretion system (T2SS) components of ETEC control enterotoxin secretion levels and may lay the foundation for a better understanding of ETEC molecular pathogenesis.


2013 ◽  
Vol 81 (4) ◽  
pp. 1078-1089 ◽  
Author(s):  
Yogitha N. Srikhanta ◽  
Dianna M. Hocking ◽  
Judyta Praszkier ◽  
Matthew J. Wakefield ◽  
Roy M. Robins-Browne ◽  
...  

ABSTRACTAraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenicEscherichia coli(EPEC), enterotoxigenicE. coli, enteroaggregativeE. coli, andCitrobacter rodentium. Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, ofC. rodentium. Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target,sefA. Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression ofsefAby binding to a region upstream of thesefApromoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22.


2006 ◽  
Vol 74 (2) ◽  
pp. 1072-1083 ◽  
Author(s):  
Andrew Bryan ◽  
Paula Roesch ◽  
Lindsay Davis ◽  
Rebecca Moritz ◽  
Shahaireen Pellett ◽  
...  

ABSTRACT Genomic DNA sequence analysis of the uropathogenic Escherichia coli strain CFT073 revealed that besides the fimB and fimE recombinase genes that control the type 1 pilus fim phase switch, there are three additional fimB- and fimE-like genes: ipuA, ipuB, and ipbA. Alignment of the predicted amino acid sequences showed that the five recombinases range in sequence similarity from 63 to 70%. An epidemiological survey indicates that ipuA and ipuB are present and linked next to the dsdCXA locus in 24 of 67 uropathogenic E. coli strains but are found in only 1 of 15 normal human fecal isolates. The ipbA sequence located next to the betABIT locus was found in 42 of 67 uropathogenic isolates and 8 of 15 of the commensal strains. We show that two of these recombinases, those encoded by ipuA and ipbA, can function at the type 1 pilus fim switch. In a CFT073 deletion mutant lacking all five recombinase genes, recombinant ipuA or ipbA provided in trans inverted the fim element from the off state to the on state. When a fim OFF CFT073 ΔfimBE mutant was used to infect the urinary tracts of mice, a switch to the fim on state was detected within 24 h in bacteria recovered from urine, the bladder, and the kidneys. A fim OFF CFT073 ΔfimBE ipuB ipbA mutant also demonstrated the ability to switch from the fim off state to the on state during mouse infection. CFT073 recombinase mutants derived from isolates in either the fim on or off state showed a reciprocal relationship for motility. Switches from a nonmotile to a motile phenotype and from a fim on to off genotype were observed in fim ON CFT073 ΔfimBE ipuAB ipbA mutants when ipuA or fimB was provided in trans. Together these results indicate that ipuA has fimB-like on-to-off and off-to-on fim switching activity and that ipbA has the ability to switch fim from the off to the on orientation.


2005 ◽  
Vol 73 (3) ◽  
pp. 1343-1349 ◽  
Author(s):  
George Hajishengallis ◽  
Richard I. Tapping ◽  
Michael H. Martin ◽  
Hesham Nawar ◽  
Elizabeth A. Lyle ◽  
...  

ABSTRACT The type II heat-labile enterotoxins (LT-IIa and LT-IIb) of Escherichia coli have an AB5 subunit structure similar to that of cholera toxin (CT) and other type I enterotoxins, despite significant differences in the amino acid sequences of their B subunits and different ganglioside receptor specificities. LT-II holotoxins and their nontoxic B subunits display unique properties as immunological adjuvants distinct from those of CT and its B subunits. In contrast to type II holotoxins, the corresponding pentameric B subunits, LT-IIaB and LT-IIbB, stimulated cytokine release in both human and mouse cells dependent upon Toll-like receptor 2 (TLR2). Induction of interleukin-1β (IL-1β), IL-6, IL-8, or tumor necrosis factor alpha in human THP-1 cells by LT-IIaB or LT-IIbB was inhibited by anti-TLR2 but not by anti-TLR4 antibody. Furthermore, transient expression of TLR1 and TLR2 in human embryonic kidney 293 cells resulted in activation of a nuclear factor-κB-dependent luciferase gene in response to LT-IIaB or LT-IIbB. Moreover, peritoneal macrophages from TLR2-deficient mice failed to respond to LT-IIaB or LT-IIbB, in contrast to wild-type or TLR4-deficient cells. These results demonstrate that besides their established binding to gangliosides, the B subunits of type II enterotoxins also interact with TLR2. Although a ganglioside-nonbinding mutant (T34I) of LT-IIaB effectively induced cytokine release, a phenotypically similar point mutation (T13I) in LT-IIbB abrogated cytokine induction, suggesting a variable requirement for gangliosides as coreceptors in TLR2 agonist activity. TLR2-dependent activation of mononuclear cells by type II enterotoxin B subunits appears to be a novel mechanism whereby these molecules may exert their immunomodulatory and adjuvant activities.


1987 ◽  
Vol 50 (12) ◽  
pp. 1017-1022 ◽  
Author(s):  
LAWRENCE RESTAINO ◽  
RICHARD H. LYON

Petrifilm™ violet red bile (PVRB) compared favorably to the most probable number method (MPN) and violet red bile agar (VRBA) methods for enumerating coliforms from frozen raw ground beef. When comparing PVRB and VRBA incubated at 35°C, coliform enumeration displayed a linear relationship (correlation coefficient of 0.932). However, by analyzing 64 ground beef samples, PVRB enumerated 41% more coliforms/g than did VRBA. Two distinct colony types were observed on PVRB: (a) type I (butterfly in appearence) with a colony diameter equal to or greater than 1 mm and gas bubbles 2–4 mm in diameter touching the associated colony; and (b) type II with a colony diameter less than 1 mm in diameter and gas bubbles of the associated colony not necessarily touching the colony but within a colony diameter. The disparity between PVRB and VRBA for enumerating coliforms was attributed to non-coliforms representing approximately 50% of the type II coliform colonies. At 35°C, 83.7% of the type I colonies were Escherichia coli, whereas only 10.9%, of the type II colonies were E. coli. By elevating the incubation temperature from 35°C to 44.5°C, over 90% of the colonies in the counting dilution were type I of which 99.2% were E. coli. At 44.5°C, 39.4% of the type II colonies were E. coli; however, this colony type represented only 9.5% of the total colonies on PVRB. Therefore, a reliable method for enumerating E. coli from raw meat was developed by counting only the type I colonies on PVRB incubated at 44.5°C.


2006 ◽  
Vol 72 (5) ◽  
pp. 3336-3342 ◽  
Author(s):  
Bong Hyun Sung ◽  
Choong Hoon Lee ◽  
Byung Jo Yu ◽  
Jun Hyoung Lee ◽  
Ju Young Lee ◽  
...  

ABSTRACT Bacteria form biofilms by adhering to biotic or abiotic surfaces. This phenomenon causes several problems, including a reduction in the transport of mass and heat, an increase in resistance to antibiotics, and a shortening of the lifetimes of modules in bioindustrial fermentors. To overcome these difficulties, we created a biofilm production-deficient Escherichia coli strain, BD123, by deleting genes involved in curli biosynthesis and assembly, Δ(csgG-csgC); colanic acid biosynthesis and assembly, Δ(wcaL-wza); and type I pilus biosynthesis, Δ(fimB-fimH). E. coli BD123 remained mostly in the form of planktonic cells under the conditions tested and became more sensitive to the antibiotics streptomycin and rifampin than the wild-type E. coli MG1655: the growth of BD123 was inhibited by one-fourth of the concentrations needed to inhibit MG1655. In addition, the transformation efficiency of BD123 was about 20 times higher than that of MG1655, and the production and secretion of recombinant proteins were ∼16% and ∼25% greater, respectively, with BD123 than with MG1655. These results indicate that the newly created biofilm production-deficient strain of E. coli displays several key properties that substantially enhance its utility in the biotechnology arena.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Xing-bei Weng ◽  
Zu-huang Mi ◽  
Chun-xin Wang ◽  
Jian-ming Zhu

Escherichia coli NB8 is a clinical pyelonephritis isolate. Here, we report the draft genome sequence of uropathogenic E. coli NB8, which contains drug resistance genes encoding resistance to beta-lactams, aminoglycosides, quinolones, macrolides, colistin, sulfonamide-trimethoprim, and tetracycline. NB8 infects the kidney and bladder, making it an important tool for studying E. coli pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document