scholarly journals Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor

2015 ◽  
Vol 83 (10) ◽  
pp. 3989-4002 ◽  
Author(s):  
Gunnar N. Schroeder ◽  
Philipp Aurass ◽  
Clare V. Oates ◽  
Edward W. Tate ◽  
Elizabeth L. Hartland ◽  
...  

Legionella pneumophilais a bacterial pathogen that thrives in alveolar macrophages, causing a severe pneumonia. The virulence ofL. pneumophiladepends on its Dot/Icm type IV secretion system (T4SS), which delivers more than 300 effector proteins into the host, where they rewire cellular signaling to establish a replication-permissive niche, theLegionella-containing vacuole (LCV). Biogenesis of the LCV requires substantial redirection of vesicle trafficking and remodeling of intracellular membranes. In order to achieve this, several T4SS effectors target regulators of membrane trafficking, while others resemble lipases. Here, we characterized LpdA, a phospholipase D effector, which was previously proposed to modulate the lipid composition of the LCV. We found that ectopically expressed LpdA was targeted to the plasma membrane and Rab4- and Rab14-containing vesicles. Subcellular targeting of LpdA required a C-terminal motif, which is posttranslationally modified by S-palmitoylation. Substrate specificity assays showed that LpdA hydrolyzed phosphatidylinositol, -inositol-3- and -4-phosphate, and phosphatidylglycerol to phosphatidic acid (PA)in vitro. In HeLa cells, LpdA generated PA at vesicles and the plasma membrane. Imaging of different phosphatidylinositol phosphate (PIP) and organelle markers revealed that while LpdA did not impact on membrane association of various PIP probes, it triggered fragmentation of the Golgi apparatus. Importantly, although LpdA is translocated inefficiently into cultured cells, anL. pneumophilaΔlpdAmutant displayed reduced replication in murine lungs, suggesting that it is a virulence factor contributing toL. pneumophilainfectionin vivo.

2013 ◽  
Vol 81 (11) ◽  
pp. 4261-4270 ◽  
Author(s):  
Clare R. Harding ◽  
Corinna Mattheis ◽  
Aurélie Mousnier ◽  
Clare V. Oates ◽  
Elizabeth L. Hartland ◽  
...  

ABSTRACTThe Dot/Icm type IV secretion system (T4SS) ofLegionella pneumophilais crucial for the pathogen to survive in protozoa and cause human disease. Although more than 275 effector proteins are delivered into the host cell by the T4SS, the function of the majority is unknown. Here we have characterized the Dot/Icm effector LtpD. During infection, LtpD localized to the cytoplasmic face of the membrane of theLegionella-containing vacuole (LCV). In A549 lung epithelial cells, ectopically expressed LtpD localized to large vesicular structures that contained markers of endosomal compartments. Systematic analysis of LtpD fragments identified an internal 17-kDa fragment, LtpD471-626, which was essential for targeting ectopically expressed LtpD to vesicular structures and for the association of translocated LtpD with the LCV. LtpD471-626bound directly to phosphatidylinositol 3-phosphate [PtdIns(3)P]in vitroand colocalized with the PtdIns(3)P markers FYVE and SetA in cotransfected cells. LtpD was also found to bind the host cell enzyme inositol (myo)-1 (or 4)-monophosphatase 1, an important phosphatase involved in phosphoinositide production. Analysis of the role of LtpD in infection showed that LtpD is involved in bacterial replication in THP-1 macrophages, the larvae ofGalleria mellonella, and mouse lungs. Together, these data suggest that LtpD is a novel phosphoinositide-bindingL. pneumophilaeffector that has a role in intracellular bacterial replication.


1989 ◽  
Vol 108 (2) ◽  
pp. 401-411 ◽  
Author(s):  
J Heuser

Reducing the internal pH of cultured cells by several different protocols that block endocytosis is found to alter the structure of clathrin lattices on the inside of the plasma membrane. Lattices curve inward until they become almost spherical yet remain stubbornly attached to the membrane. Also, the lattices bloom empty "microcages" of clathrin around their edges. Correspondingly, broken-open cells bathed in acidified media demonstrate similar changes in clathrin lattices. Acidification accentuates the normal tendency of lattices to round up in vitro and also stimulates them to nucleate microcage formation from pure solutions of clathrin. On the other hand, several conditions that also inhibit endocytosis have been found to create, instead of unusually curved clathrin lattices with extraneous microcages, a preponderance of unusually flat lattices. These treatments include pH-"clamping" cells at neutrality with nigericin, swelling cells with hypotonic media, and sticking cells to the surface of a culture dish with soluble polylysine. Again, the unusually flat lattices in such cells display a tendency to round up and to nucleate clathrin microcage formation during subsequent in vitro acidification. This indicates that regardless of the initial curvature of clathrin lattices, they all display an ability to grow and increase their curvature in vitro, and this is enhanced by lowering ambient pH. Possibly, clathrin lattice growth and curvature in vivo may also be stimulated by a local drop in pH around clusters of membrane receptors.


1994 ◽  
Vol 107 (6) ◽  
pp. 1623-1631 ◽  
Author(s):  
M. Footer ◽  
A. Bretscher

The isolated intestinal microvillus cytoskeleton (core) consists of four major proteins: actin, villin, fimbrin and brush border myosin-I. These proteins can assemble in vitro into structures resembling native microvillus cores. Of these components, villin and brush border myosin-I show tissue-specific expression, so they may be involved in the morphogenesis of intestinal microvilli. When introduced into cultured cells that normally lack the protein, villin induces a reorganization of the actin filaments to generate large surface microvilli. Here we examine the consequences of microinjecting brush border myosin-I either alone or together with villin into cultured fibroblasts. Injection of brush border myosin-I has no discernible effect on the overall morphology of the cells, but does become localized to either normal or villin-induced microvilli and other surface structures containing an actin cytoskeleton. Since some endogenous myosin-Is have been found associated with cytoplasmic vesicles, these results show that brush border myosin-I has a domain that specifically targets it to the plasma membrane in both intestinal and cultured cell systems. Ultrastructural examination of microvilli on control cultured cells revealed that they contain a far more highly ordered bundle of microfilaments than had been previously appreciated. The actin filaments in microvilli of villin-injected cells appeared to be more tightly cross-linked when examined by thin-section electron microscopy. In intestinal microvilli, the core bundle is separated from the plasma membrane by about 30 nm due to the presence of brush border myosin-I.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 11 (5) ◽  
pp. 590-600 ◽  
Author(s):  
Fabien Lefèbvre ◽  
Valérie Prouzet-Mauléon ◽  
Michel Hugues ◽  
Marc Crouzet ◽  
Aurélie Vieillemard ◽  
...  

ABSTRACT Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae , the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P 2 production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck.


2019 ◽  
Vol 201 (6) ◽  
Author(s):  
Qingqing Gao ◽  
Le Xia ◽  
Xiaobo Wang ◽  
Zhengqin Ye ◽  
Jinbiao Liu ◽  
...  

ABSTRACTStrains of avian pathogenicEscherichia coli(APEC), the common pathogen of avian colibacillosis, encounter reactive oxygen species (ROS) during the infection process. Superoxide dismutases (SODs), acting as antioxidant factors, can protect against ROS-mediated host defenses. Our previous reports showed that thesodAgene (encoding a Mn-cofactor-containing SOD [MnSOD]) is highly expressed during the septicemic infection process of APEC.sodAhas been proven to be a virulence factor of certain pathogens, but its role in the pathogenicity of APEC has not been fully identified. In this study, we deleted thesodAgene from the virulent APEC O2 strain E058 and examined thein vitroandin vivophenotypes of the mutant. ThesodAmutant was more sensitive to hydrogen peroxide in terms of both its growth and viability than was the wild type. The ability to form a biofilm was weakened in thesodAmutant. ThesodAmutant was significantly more easily phagocytosed by chicken macrophages than was the wild-type strain. Chicken infection assays revealed significantly attenuated virulence of thesodAmutant compared with the wild type at 24 h postinfection. The virulence phenotype was restored by complementation of thesodAgene. Quantitative real-time reverse transcription-PCR revealed that the inactivation ofsodAreduced the expression of oxidative stress response geneskatE,perR, andosmCbut did not affect the expression ofsodBandsodC. Taken together, our studies indicate that SodA is important for oxidative resistance and virulence of APEC E058.IMPORTANCEAvian colibacillosis, caused by strains of avian pathogenicEscherichia coli, is a major bacterial disease of severe economic significance to the poultry industry worldwide. The virulence mechanisms of APEC are not completely understood. This study investigated the influence of an antioxidant protein, SodA, on the phenotype and pathogenicity of APEC O2 strain E058. This is the first report demonstrating that SodA plays an important role in protecting a specific APEC strain against hydrogen peroxide-induced oxidative stress and contributes to the virulence of this pathotype strain. Identification of this virulence factor will enhance our knowledge of APEC pathogenic mechanisms, which is crucial for designing successful strategies against associated infections and transmission.


2002 ◽  
Vol 159 (6) ◽  
pp. 1039-1049 ◽  
Author(s):  
Vicki A. Sciorra ◽  
Simon A. Rudge ◽  
Jiyao Wang ◽  
Stuart McLaughlin ◽  
JoAnne Engebrecht ◽  
...  

Phospholipase D (PLD) generates lipid signals that coordinate membrane trafficking with cellular signaling. PLD activity in vitro and in vivo is dependent on phosphoinositides with a vicinal 4,5-phosphate pair. Yeast and mammalian PLDs contain an NH2-terminal pleckstrin homology (PH) domain that has been speculated to specify both subcellular localization and regulation of PLD activity through interaction with phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2). We report that mutation of the PH domains of yeast and mammalian PLD enzymes generates catalytically active PI(4,5)P2-regulated enzymes with impaired biological functions. Disruption of the PH domain of mammalian PLD2 results in relocalization of the protein from the PI(4,5)P2-containing plasma membrane to endosomes. As a result of this mislocalization, mutations within the PH domain render the protein unresponsive to activation in vivo. Furthermore, the integrity of the PH domain is vital for yeast PLD function in both meiosis and secretion. Binding of PLD2 to model membranes is enhanced by acidic phospholipids. Studies with PLD2-derived peptides suggest that this binding involves a previously identified polybasic motif that mediates activation of the enzyme by PI(4,5)P2. By comparison, the PLD2 PH domain binds PI(4,5)P2 with lower affinity but sufficient selectivity to function in concert with the polybasic motif to target the protein to PI(4,5)P2-rich membranes. Phosphoinositides therefore have a dual role in PLD regulation: membrane targeting mediated by the PH domain and stimulation of catalysis mediated by the polybasic motif.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jinyuan Vero Li ◽  
Chai-Ann Ng ◽  
Delfine Cheng ◽  
Zijing Zhou ◽  
Mingxi Yao ◽  
...  

AbstractMechanosensitive channels are integral membrane proteins that sense mechanical stimuli. Like most plasma membrane ion channel proteins they must pass through biosynthetic quality control in the endoplasmic reticulum that results in them reaching their destination at the plasma membrane. Here we show that N-linked glycosylation of two highly conserved asparagine residues in the ‘cap’ region of mechanosensitive Piezo1 channels are necessary for the mature protein to reach the plasma membrane. Both mutation of these asparagines (N2294Q/N2331Q) and treatment with an enzyme that hydrolyses N-linked oligosaccharides (PNGaseF) eliminates the fully glycosylated mature Piezo1 protein. The N-glycans in the cap are a pre-requisite for N-glycosylation in the ‘propeller’ regions, which are present in loops that are essential for mechanotransduction. Importantly, trafficking-defective Piezo1 variants linked to generalized lymphatic dysplasia and bicuspid aortic valve display reduced fully N-glycosylated Piezo1 protein. Thus the N-linked glycosylation status in vitro correlates with efficient membrane trafficking and will aid in determining the functional impact of Piezo1 variants of unknown significance.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
A. Leoni Swart ◽  
Bernhard Steiner ◽  
Laura Gomez-Valero ◽  
Sabina Schütz ◽  
Mandy Hannemann ◽  
...  

ABSTRACT Legionella pneumophila governs its interactions with host cells by secreting >300 different “effector” proteins. Some of these effectors contain eukaryotic domains such as the RCC1 (regulator of chromosome condensation 1) repeats promoting the activation of the small GTPase Ran. In this report, we reveal a conserved pattern of L. pneumophila RCC1 repeat genes, which are distributed in two main clusters of strains. Accordingly, strain Philadelphia-1 contains two RCC1 genes implicated in bacterial virulence, legG1 (Legionella eukaryotic gene 1), and ppgA, while strain Paris contains only one, pieG. The RCC1 repeat effectors localize to different cellular compartments and bind distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself, and yet they all promote the activation of Ran. The pieG gene spans the corresponding open reading frames of legG1 and a separate adjacent upstream gene, lpg1975. legG1 and lpg1975 are fused upon addition of a single nucleotide to encode a protein that adopts the binding specificity of PieG. Thus, a point mutation in pieG splits the gene, altering the effector target. These results indicate that divergent evolution of RCC1 repeat effectors defines the Ran GTPase cycle targets and that modulation of different components of the cycle might fine-tune Ran activation during Legionella infection. IMPORTANCE Legionella pneumophila is a ubiquitous environmental bacterium which, upon inhalation, causes a life-threatening pneumonia termed Legionnaires’ disease. The opportunistic pathogen grows in amoebae and macrophages by employing a “type IV” secretion system, which secretes more than 300 different “effector” proteins into the host cell, where they subvert pivotal processes. The function of many of these effector proteins is unknown, and their evolution has not been studied. L. pneumophila RCC1 repeat effectors target the small GTPase Ran, a molecular switch implicated in different cellular processes such as nucleocytoplasmic transport and microtubule cytoskeleton dynamics. We provide evidence that one or more RCC1 repeat genes are distributed in two main clusters of L. pneumophila strains and have divergently evolved to target different components of the Ran GTPase activation cycle at different subcellular sites. Thus, L. pneumophila employs a sophisticated strategy to subvert host cell Ran GTPase during infection.


2020 ◽  
Vol 88 (5) ◽  
Author(s):  
Ashley M. Joseph ◽  
Adrienne E. Pohl ◽  
Theodore J. Ball ◽  
Troy G. Abram ◽  
David K. Johnson ◽  
...  

ABSTRACT Legionella pneumophila, the etiological agent of Legionnaires’ disease, employs an arsenal of hundreds of Dot/Icm-translocated effector proteins to facilitate replication within eukaryotic phagocytes. Several effectors, called metaeffectors, function to regulate the activity of other Dot/Icm-translocated effectors during infection. The metaeffector Lpg2505 is essential for L. pneumophila intracellular replication only when its cognate effector, SidI, is present. SidI is a cytotoxic effector that interacts with the host translation factor eEF1A and potently inhibits eukaryotic protein translation by an unknown mechanism. Here, we evaluated the impact of Lpg2505 on SidI-mediated phenotypes and investigated the mechanism of SidI function. We determined that Lpg2505 binds with nanomolar affinity to SidI and suppresses SidI-mediated inhibition of protein translation. SidI binding to eEF1A and Lpg2505 is not mutually exclusive, and the proteins bind distinct regions of SidI. We also discovered that SidI possesses GDP-dependent glycosyl hydrolase activity and that this activity is regulated by Lpg2505. We have therefore renamed Lpg2505 MesI (metaeffector of SidI). This work reveals novel enzymatic activity for SidI and provides insight into how intracellular replication of L. pneumophila is regulated by a metaeffector.


2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Georgina L. Pollock ◽  
Clare V. L. Oates ◽  
Cristina Giogha ◽  
Tania Wong Fok Lung ◽  
Sze Ying Ong ◽  
...  

ABSTRACT During infection, enteropathogenic Escherichia coli (EPEC) translocates effector proteins directly into the cytosol of infected enterocytes using a type III secretion system (T3SS). Once inside the host cell, these effector proteins subvert various immune signaling pathways, including death receptor-induced apoptosis. One such effector protein is the non-locus of enterocyte effacement (LEE)-encoded effector NleB1, which inhibits extrinsic apoptotic signaling via the FAS death receptor. NleB1 transfers a single N-acetylglucosamine (GlcNAc) residue to Arg117 in the death domain of Fas-associated protein with death domain (FADD) and inhibits FAS ligand (FasL)-stimulated caspase-8 cleavage. Another effector secreted by the T3SS is NleF. Previous studies have shown that NleF binds to and inhibits the activity of caspase-4, -8, and -9 in vitro. Here, we investigated a role for NleF in the inhibition of FAS signaling and apoptosis during EPEC infection. We show that NleF prevents the cleavage of caspase-8, caspase-3, and receptor-interacting serine/threonine protein kinase 1 (RIPK1) in response to FasL stimulation. When translocated into host cells by the T3SS or expressed ectopically, NleF also blocked FasL-induced cell death. Using the EPEC-like mouse pathogen Citrobacter rodentium, we found that NleB but not NleF contributed to colonization of mice in the intestine. Hence, despite their shared ability to block FasL/FAS signaling, NleB and NleF have distinct roles during infection.


Sign in / Sign up

Export Citation Format

Share Document