scholarly journals Carbon Storage Regulator A Contributes to the Virulence of Haemophilus ducreyi in Humans by Multiple Mechanisms

2012 ◽  
Vol 81 (2) ◽  
pp. 608-617 ◽  
Author(s):  
Dharanesh Gangaiah ◽  
Wei Li ◽  
Kate R. Fortney ◽  
Diane M. Janowicz ◽  
Sheila Ellinger ◽  
...  

ABSTRACTThe carbon storage regulator A (CsrA) controls a wide variety of bacterial processes, including metabolism, adherence, stress responses, and virulence.Haemophilus ducreyi, the causative agent of chancroid, harbors a homolog ofcsrA. Here, we generated an unmarked, in-frame deletion mutant ofcsrAto assess its contribution toH. ducreyipathogenesis. In human inoculation experiments, thecsrAmutant was partially attenuated for pustule formation compared to its parent. Deletion ofcsrAresulted in decreased adherence ofH. ducreyito human foreskin fibroblasts (HFF); Flp1 and Flp2, the determinants ofH. ducreyiadherence to HFF cells, were downregulated in thecsrAmutant. Compared to its parent, thecsrAmutant had a significantly reduced ability to tolerate oxidative stress and heat shock. The enhanced sensitivity of the mutant to oxidative stress was more pronounced in bacteria grown to stationary phase compared to that in bacteria grown to mid-log phase. ThecsrAmutant also had a significant survival defect within human macrophages when the bacteria were grown to stationary phase but not to mid-log phase. Complementation intranspartially or fully restored the mutant phenotypes. These data suggest that CsrA contributes to virulence by multiple mechanisms and that these contributions may be more profound in bacterial cell populations that are not rapidly dividing in the human host.

2013 ◽  
Vol 81 (8) ◽  
pp. 2972-2985 ◽  
Author(s):  
S. L. Rajasekhar Karna ◽  
Rajesh G. Prabhu ◽  
Ying-Han Lin ◽  
Christine L. Miller ◽  
J. Seshu

ABSTRACTCarbon storage regulator A ofBorrelia burgdorferi(CsrABb) contributes to vertebrate host-specific adaptation by modulating activation of the Rrp2-RpoN-RpoS pathway and is critical for infectivity. We hypothesized that the functions of CsrABbare dependent on environmental signals and on select residues. We analyzed the phenotype ofcsrABbdeletion and site-specific mutants to determine the conserved and pathogen-specific attributes of CsrABb. Levels of phosphate acetyltransferase (Pta) involved in conversion of acetyl phosphate to acetyl-coenzyme A (acetyl-CoA) and posttranscriptionally regulated by CsrABbin thecsrABbmutant were reduced from or similar to those in the control strains under unfed- or fed-tick conditions, respectively. Increased levels of supplemental acetate restored vertebrate host-responsive determinants in thecsrABbmutant to parental levels, indicating that both the levels of CsrABband the acetyl phosphate and acetyl-CoA balance contribute to the activation of the Rrp2-RpoN-RpoS pathway. Site-specific replacement of 8 key residues of CsrABb(8S) with alanines resulted in increased levels of CsrABband reduced levels of Pta and acetyl-CoA, while levels of RpoS, BosR, and other members ofrpoSregulon were elevated. Truncation of 7 amino acids at the C terminus of CsrABb(7D) resulted in reducedcsrABbtranscripts and posttranscriptionally reduced levels of FliW located upstream of CsrABb. Electrophoretic mobility shift assays revealed increased binding of 8S mutant protein to the CsrA binding box upstream ofptacompared to the parental and 7D truncated protein. Two CsrABbbinding sites were also identified upstream offliWwithin theflgKcoding sequence. These observations reveal conserved and unique functions of CsrABbthat regulate adaptive gene expression inB. burgdorferi.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Dharanesh Gangaiah ◽  
Maria Labandeira-Rey ◽  
Xinjun Zhang ◽  
Kate R. Fortney ◽  
Sheila Ellinger ◽  
...  

ABSTRACTTo adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes ofHaemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog ofhfq. Insertional inactivation ofhfqaltered the expression of ~16% of theH. ducreyigenes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in thehfqinactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation ofhfqdownregulated genes in theflp-tadandlspB-lspA2operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarkedhfqdeletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion ofhfqdownregulated Flp1 and impaired the ability ofH. ducreyito form microcolonies, downregulated DsrA and renderedH. ducreyiserum susceptible, and downregulated LspB and LspA2, which allowH. ducreyito resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor ofH. ducreyistationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog.IMPORTANCEPathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, includingHaemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required forH. ducreyito infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans.


2017 ◽  
Vol 199 (9) ◽  
Author(s):  
Yunxue Guo ◽  
Xiaoxiao Liu ◽  
Baiyuan Li ◽  
Jianyun Yao ◽  
Thomas K. Wood ◽  
...  

ABSTRACT Host-associated bacteria, such as Escherichia coli, often encounter various host-related stresses, such as nutritional deprivation, oxidative stress, and temperature shifts. There is growing interest in searching for small endogenous proteins that mediate stress responses. Here, we characterized the small C-tail-anchored inner membrane protein ElaB in E. coli. ElaB belongs to a class of tail-anchored inner membrane proteins with a C-terminal transmembrane domain but lacking an N-terminal signal sequence for membrane targeting. Proteins from this family have been shown to play vital roles, such as in membrane trafficking and apoptosis, in eukaryotes; however, their role in prokaryotes is largely unexplored. Here, we found that the transcription of elaB is induced in the stationary phase in E. coli and stationary-phase sigma factor RpoS regulates elaB transcription by binding to the promoter of elaB. Moreover, ElaB protects cells against oxidative stress and heat shock stress. However, unlike membrane peptide toxins TisB and GhoT, ElaB does not lead to cell death, and the deletion of elaB greatly increases persister cell formation. Therefore, we demonstrate that disruption of C-tail-anchored inner membrane proteins can reduce stress resistance; it can also lead to deleterious effects, such as increased persistence, in E. coli. IMPORTANCE Escherichia coli synthesizes dozens of poorly understood small membrane proteins containing a predicted transmembrane domain. In this study, we characterized the function of the C-tail-anchored inner membrane protein ElaB in E. coli. ElaB increases resistance to oxidative stress and heat stress, while inactivation of ElaB leads to high persister cell formation. We also demonstrated that the transcription of elaB is under the direct regulation of stationary-phase sigma factor RpoS. Thus, our study reveals that small inner membrane proteins may have important cellular roles during the stress response.


2014 ◽  
Vol 58 (10) ◽  
pp. 5964-5975 ◽  
Author(s):  
Jing-Hung Wang ◽  
Rachna Singh ◽  
Michael Benoit ◽  
Mimi Keyhan ◽  
Matthew Sylvester ◽  
...  

ABSTRACTStationary-phase bacteria are important in disease. The σs-regulated general stress response helps them become resistant to disinfectants, but the role of σsin bacterial antibiotic resistance has not been elucidated. Loss of σsrendered stationary-phaseEscherichia colimore sensitive to the bactericidal antibiotic gentamicin (Gm), and proteomic analysis suggested involvement of a weakened antioxidant defense. Use of the psfiAgenetic reporter, 3′-(p-hydroxyphenyl) fluorescein (HPF) dye, and Amplex Red showed that Gm generated more reactive oxygen species (ROS) in the mutant. HPF measurements can be distorted by cell elongation, but Gm did not affect stationary-phase cell dimensions. Coadministration of the antioxidantN-acetyl cysteine (NAC) decreased drug lethality particularly in the mutant, as did Gm treatment under anaerobic conditions that prevent ROS formation. Greater oxidative stress, due to insufficient quenching of endogenous ROS and/or respiration-linked electron leakage, therefore contributed to the greater sensitivity of the mutant; infection by a uropathogenic strain in mice showed this to be the case alsoin vivo. Disruption of antioxidant defense by eliminating the quencher proteins, SodA/SodB and KatE/SodA, or the pentose phosphate pathway proteins, Zwf/Gnd and TalA, which provide NADPH for ROS decomposition, also generated greater oxidative stress and killing by Gm. Thus, besides its established mode of action, Gm also kills stationary-phase bacteria by generating oxidative stress, and targeting the antioxidant defense ofE. colican enhance its efficacy. Relevant aspects of the current controversy on the role of ROS in killing by bactericidal drugs of exponential-phase bacteria, which represent a different physiological state, are discussed.


2006 ◽  
Vol 188 (5) ◽  
pp. 1835-1846 ◽  
Author(s):  
Cristina E. Alvarez-Martinez ◽  
Regina L. Baldini ◽  
Suely L. Gomes

ABSTRACT Alternative sigma factors of the extracytoplasmic function (ECF) subfamily are important regulators of stress responses in bacteria and have been implicated in the control of homeostasis of the extracytoplasmic compartment of the cell. This work describes the characterization of sigF, encoding 1 of the 13 members of this subfamily identified in Caulobacter crescentus. A sigF-null strain was obtained and shown to be severely impaired in resistance to oxidative stress, caused by hydrogen peroxide treatment, exclusively during the stationary phase. Although sigF mRNA levels decrease in stationary-phase cells, the amount of σF protein is greatly increased at this stage, indicating a posttranscriptional control. Data obtained indicate that the FtsH protease is either directly or indirectly involved in the control of σF levels, as cells lacking this enzyme present larger amounts of the sigma factor. Increased stability of σF protein in stationary-phase cells of the parental strain and in exponential-phase cells of the ftsH-null strain is also demonstrated. Transcriptome analysis of the sigF-null strain led to the identification of eight genes regulated by σF during the stationary phase, including sodA and msrA, which are known to be involved in oxidative stress response.


2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Hervé Nicoloff ◽  
Saumya Gopalkrishnan ◽  
Sarah E. Ades

ABSTRACT The alternative sigma factor σE is a key component of the Escherichia coli response to cell envelope stress and is required for viability even in the absence of stress. The activity of σE increases during entry into stationary phase, suggesting an important role for σE when nutrients are limiting. Elevated σE activity has been proposed to activate a pathway leading to the lysis of nonculturable cells that accumulate during early stationary phase. To better understand σE-directed cell lysis and the role of σE in stationary phase, we investigated the effects of elevated σE activity in cultures grown for 10 days. We demonstrate that high σE activity is lethal for all cells in stationary phase, not only those that are nonculturable. Spontaneous mutants with reduced σE activity, due primarily to point mutations in the region of σE that binds the −35 promoter motif, arise and take over cultures within 5 to 6 days after entry into stationary phase. High σE activity leads to large reductions in the levels of outer membrane porins and increased membrane permeability, indicating membrane defects. These defects can be counteracted and stationary-phase lethality delayed significantly by stabilizing membranes with Mg2+ and buffering the growth medium or by deleting the σE-dependent small RNAs (sRNAs) MicA, RybB, and MicL, which inhibit the expression of porins and Lpp. Expression of these sRNAs also reverses the loss of viability following depletion of σE activity. Our results demonstrate that appropriate regulation of σE activity, ensuring that it is neither too high nor too low, is critical for envelope integrity and cell viability. IMPORTANCE The Gram-negative cell envelope and cytoplasm differ significantly, and separate responses have evolved to combat stress in each compartment. An array of cell envelope stress responses exist, each of which is focused on different parts of the envelope. The σE response is conserved in many enterobacteria and is tuned to monitor pathways for the maturation and delivery of outer membrane porins, lipoproteins, and lipopolysaccharide to the outer membrane. The activity of σE is tightly regulated to match the production of σE regulon members to the needs of the cell. In E. coli, loss of σE results in lethality. Here we demonstrate that excessive σE activity is also lethal and results in decreased membrane integrity, the very phenotype the system is designed to prevent.


2019 ◽  
Vol 201 (8) ◽  
Author(s):  
Derek E. Moormeier ◽  
Kelsi M. Sandoz ◽  
Paul A. Beare ◽  
Daniel E. Sturdevant ◽  
Vinod Nair ◽  
...  

ABSTRACTCoxiella burnetii, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from a replicating (exponential-phase) large cell variant (LCV) form to a nonreplicating (stationary-phase) small cell variant (SCV) form. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary-phase physiology in several bacterial species, includingLegionella pneumophila, which has a developmental cycle superficially similar to that ofC. burnetii. Here, we used aC. burnetiiΔrpoSmutant to define the role of RpoS in intracellular growth and SCV development. Growth yields following infection of Vero epithelial cells or THP-1 macrophage-like cells with therpoSmutant in the SCV form, but not the LCV form, were significantly lower than that of wild-type bacteria. RNA sequencing and whole-cell mass spectrometry of theC. burnetiiΔrpoSmutant revealed that a substantial portion of theC. burnetiigenome is regulated by RpoS during SCV development. Regulated genes include those involved in stress responses, arginine transport, peptidoglycan remodeling, and synthesis of the SCV-specific protein ScvA. Genes comprising thedot/icmlocus, responsible for production of the Dot/Icm type 4B secretion system, were also dysregulated in therpoSmutant. These data were corroborated with independent assays demonstrating that theC. burnetiiΔrpoSstrain has increased sensitivity to hydrogen peroxide and carbenicillin and a thinner cell wall/outer membrane complex. Collectively, these results demonstrate that RpoS is an important regulator of genes involved inC. burnetiiSCV development and intracellular growth.IMPORTANCEThe Q fever bacteriumCoxiella burnetiihas spore-like environmental stability, a characteristic that contributes to its designation as a potential bioweapon. Stability is likely conferred by a highly resistant, small cell variant (SCV) stationary-phase form that arises during a biphasic developmental cycle. Here, we define the role of the alternative sigma factor RpoS in regulating genes associated with SCV development. Genes involved in stress responses, amino acid transport, cell wall remodeling, and type 4B effector secretion were dysregulated in therpoSmutant. Cellular impairments included defects in intracellular growth, cell wall structure, and resistance to oxidants. These results support RpoS as a central regulator of theCoxielladevelopmental cycle and identify developmentally regulated genes involved in morphological differentiation.


2012 ◽  
Vol 78 (9) ◽  
pp. 3442-3457 ◽  
Author(s):  
Michael S. Schwalbach ◽  
David H. Keating ◽  
Mary Tremaine ◽  
Wesley D. Marner ◽  
Yaoping Zhang ◽  
...  

ABSTRACTThe physiology of ethanologenicEscherichia coligrown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into howE. coliresponds to such hydrolysates, we studied anE. coliK-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate,E. coliceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates.


2018 ◽  
Vol 200 (16) ◽  
Author(s):  
Carolina López ◽  
Susana K. Checa ◽  
Fernando C. Soncini

ABSTRACTPeriplasmic thiol/disulfide oxidoreductases participate in the formation and isomerization of disulfide bonds and contribute to the virulence of pathogenic microorganisms. Among the systems encoded in theSalmonellagenome, the system encoded by thescsABCDlocus was shown to be required to cope with Cu and H2O2stress. Here we report that this locus forms an operon whose transcription is driven by a promoter upstream ofscsAand depends on CpxR/CpxA and on Cu. Furthermore, genes homologous toscsB,scsC, andscsDare always detected immediately downstream ofscsAand in the same genetic arrangement in allscsA-harboring enterobacterial species. Also, a CpxR-binding site is detected upstream ofscsAin most of those species, providing evidence of evolutionarily conserved function and regulation. Each individualscsgene shows a different role in copper and/or H2O2resistance, indicating hierarchical contributions of these factors in the defense against these intoxicants. A protective effect of Cu preincubation against H2O2toxicity and the increased Cu-mediated activation ofcpxPin the ΔscsABCDmutant suggest that the CpxR/CpxA-controlled transcription of the ScsABCD system contributes to prevent Cu toxicity and to restore the redox balance at theSalmonellaenvelope.IMPORTANCECopper intoxication triggers both specific and nonspecific responses inSalmonella. Thescslocus, which codes for periplasmic thiol/disulfide-oxidoreductase/isomerase-like proteins, has been the focus of attention because it is necessary for copper resistance, oxidative stress responses, and virulence and because it is not present in nonpathogenicEscherichia coli. Still, the conditions under which thescslocus is expressed and the roles of its individual components remain unknown. In this report, we examine the contribution of each Scs factor to survival under H2O2and copper stress. We establish that thescsgenes form a copper-activated operon controlled by the CpxR/CpxA signal transduction system, and we provide evidence of its conserved gene arrangement and regulation in other bacterial pathogens.


Sign in / Sign up

Export Citation Format

Share Document