scholarly journals Filarial Lymphatic Pathology Reflects Augmented Toll-Like Receptor-Mediated, Mitogen-Activated Protein Kinase-Mediated Proinflammatory Cytokine Production

2011 ◽  
Vol 79 (11) ◽  
pp. 4600-4608 ◽  
Author(s):  
Subash Babu ◽  
R. Anuradha ◽  
N. Pavan Kumar ◽  
P. Jovvian George ◽  
V. Kumaraswami ◽  
...  

ABSTRACTLymphatic filariasis can be associated with the development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Toll-like receptors (TLRs) are thought to play a major role in the development of filarial pathology. To elucidate the role of TLRs in the development of lymphatic pathology, we examined cytokine responses to different Toll ligands in patients with chronic lymphatic pathology (CP), infected patients with subclinical pathology (INF), and uninfected, endemic-normal (EN) individuals. TLR2, -7, and -9 ligands induced significantly elevated production of Th1 and other proinflammatory cytokines in CP patients in comparison to both INF and EN patients. TLR adaptor expression was not significantly different among the groups; however, both TLR2 and TLR9 ligands induced significantly higher levels of phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein (MAP) kinases (MAPK) as well as increased activation of NF-κB in CP individuals. Pharmacologic inhibition of both ERK1/2 and p38 MAP kinase pathways resulted in significantly diminished production of proinflammatory cytokines in CP individuals. Our data, therefore, strongly suggest an important role for TLR2- and TLR9-mediated proinflammatory cytokine induction and activation of both the MAPK and NF-κB pathways in the development of pathology in human lymphatic filariasis.

2001 ◽  
Vol 281 (1) ◽  
pp. C350-C360 ◽  
Author(s):  
David J. Elzi ◽  
A. Jason Bjornsen ◽  
Todd MacKenzie ◽  
Travis H. Wyman ◽  
Christopher C. Silliman

Many receptor-linked agents that prime or activate the NADPH oxidase in polymorphonuclear neutrophils (PMNs) elicit changes in cytosolic Ca2+concentration and activate mitogen-activated protein (MAP) kinases. To investigate the role of Ca2+in the activation of p38 and p42/44 MAP kinases, we examined the effects of the Ca2+-selective ionophore ionomycin on priming and activation of the PMN oxidase. Ionomycin caused a rapid rise in cytosolic Ca2+that was due to both a release of cytosolic Ca2+stores and Ca2+influx. Ionomycin also activated (2 μM) and primed (20–200 nM) the PMN oxidase. Dual phosphorylation of p38 MAP kinase and phosphorylation of its substrate activating transcription factor-2 were detected at ionomycin concentrations that prime or activate the PMN oxidase, while dual phosphorylation of p42/44 MAP kinase and phosphorylation of its substrate Elk-1 were elicited at 0.2–2 μM. SB-203580, a p38 MAP kinase antagonist, inhibited ionomycin-induced activation of the oxidase (68 ± 8%, P < 0.05) and tyrosine phosphorylation of 105- and 72-kDa proteins; conversely, PD-98059, an inhibitor of MAP/extracellular signal-related kinase 1, had no effect. Treatment of PMNs with thapsigargin resulted in priming of the oxidase and activation of p38 MAP kinase. Chelation of cytosolic but not extracellular Ca2+completely inhibited ionomycin activation of p38 MAP kinase, whereas chelation of extracellular Ca2+abrogated activation of p42/44 MAP kinase. These results demonstrate the importance of changes in cytosolic Ca2+for MAP kinase activation in PMNs.


Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 4667-4679 ◽  
Author(s):  
Leonidas C. Platanias

AbstractMitogen-activated protein (Map) kinases are widely expressed serine-threonine kinases that mediate important regulatory signals in the cell. Three major groups of Map kinases exist: the p38 Map kinase family, the extracellular signal-regulated kinase (Erk) family, and the c-Jun NH2-terminal kinase (JNK) family. The members of the different Map kinase groups participate in the generation of various cellular responses, including gene transcription, induction of cell death or maintenance of cell survival, malignant transformation, and regulation of cell-cycle progression. Depending on the specific family isoform involved and the cellular context, Map kinase pathways can mediate signals that either promote or suppress the growth of malignant hematopoietic cells. Over the last few years, extensive work by several groups has established that Map kinase pathways play critical roles in the pathogenesis of various hematologic malignancies, providing new molecular targets for future therapeutic approaches. In this review, the involvement of various Map kinase pathways in the pathophysiology of hematologic malignances is summarized and the clinical implications of the recent advances in the field are discussed.


2012 ◽  
Vol 40 (1) ◽  
pp. 251-256 ◽  
Author(s):  
Pamela A. Lochhead ◽  
Rebecca Gilley ◽  
Simon J. Cook

The MEK5 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 5]/ERK5 pathway is the least well studied MAPK signalling module. It has been proposed to play a role in the pathology of cancer. In the present paper, we review the role of the MEK5/ERK5 pathway using the ‘hallmarks of cancer’ as a framework and consider how this pathway is deregulated. As well as playing a key role in endothelial cell survival and tubular morphogenesis during tumour neovascularization, ERK5 is also emerging as a regulator of tumour cell invasion and migration. Several oncogenes can stimulate ERK5 activity, and protein levels are increased by a novel amplification at chromosome locus 17p11 and by down-regulation of the microRNAs miR-143 and miR-145. Together, these finding underscore the case for further investigation into understanding the role of ERK5 in cancer.


2002 ◽  
Vol 282 (3) ◽  
pp. F485-F491 ◽  
Author(s):  
Misako Hayama ◽  
Risa Inoue ◽  
Satoshi Akiba ◽  
Takashi Sato

Increased prostaglandin production is implicated in the pathogenesis of glomerular disease. With this consideration, we examined the combined effects of reactive oxygen species and platelet-derived growth factor (PDGF), which might initiate glomerular dysfunction, on arachidonic acid release and cytosolic phospholipase A2 (cPLA2) activation in rat mesangial cells. H2O2-induced release of arachidonic acid was enhanced by PDGF, which by itself had little effect on the release, and the enhancement was completely inhibited by a cPLA2 inhibitor. The phosphorylation of cPLA2, extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein (MAP) kinase was upregulated by H2O2 or PDGF alone and except for ERK was enhanced further by the two in combination. The release of arachidonic acid induced by PDGF together with H2O2 was inhibited partially by an inhibitor of ERK or p38 MAP kinase and completely when the two inhibitors were combined; the inhibitory pattern was similar to that for the phosphorylation of cPLA2. These results suggest that the ERK and p38 MAP kinase pathways are involved in the increase in cPLA2activation and arachidonic acid release induced by PDGF together with H2O2.


2005 ◽  
Vol 25 (2) ◽  
pp. 854-864 ◽  
Author(s):  
Sandrine Marchetti ◽  
Clotilde Gimond ◽  
Jean-Claude Chambard ◽  
Thomas Touboul ◽  
Danièle Roux ◽  
...  

ABSTRACT Mitogen-activated protein (MAP) kinase phosphatases (MKPs) are dual-specificity phosphatases that dephosphorylate phosphothreonine and phosphotyrosine residues within MAP kinases. Here, we describe a novel posttranslational mechanism for regulating MKP-3/Pyst1/DUSP6, a member of the MKP family that is highly specific for extracellular signal-regulated kinase 1 and 2 (ERK1/2) inactivation. Using a fibroblast model in which the expression of either MKP-3 or a more stable MKP-3-green fluorescent protein (GFP) chimera was induced by tetracycline, we found that serum induces the phosphorylation of MKP-3 and its subsequent degradation by the proteasome in a MEK1 and MEK2 (MEK1/2)-ERK1/2-dependent manner. In vitro phosphorylation assays using glutathione S-transferase (GST)-MKP-3 fusion proteins indicated that ERK2 could phosphorylate MKP-3 on serines 159 and 197. Tetracycline-inducible cell clones expressing either single or double serine mutants of MKP-3 or MKP-3-GFP confirmed that these two sites are targeted by the MEK1/2-ERK1/2 module in vivo. Double serine mutants of MKP-3 or MKP-3-GFP were more efficiently protected from degradation than single mutants or wild-type MKP-3, indicating that phosphorylation of either serine by ERK1/2 enhances proteasomal degradation of MKP-3. Hence, double mutation caused a threefold increase in the half-life of MKP-3. Finally, we show that the phosphorylation of MKP-3 has no effect on its catalytic activity. Thus, ERK1/2 exert a positive feedback loop on their own activity by promoting the degradation of MKP-3, one of their major inactivators in the cytosol, a situation opposite to that described for the nuclear phosphatase MKP-1.


2019 ◽  
Vol 20 (6) ◽  
pp. 1426 ◽  
Author(s):  
Barbara Stecca ◽  
Elisabetta Rovida

Extracellular signal-regulated kinase 5 (ERK5) belongs to the mitogen-activated protein kinase (MAPK) family that consists of highly conserved enzymes expressed in all eukaryotic cells and elicits several biological responses, including cell survival, proliferation, migration, and differentiation. In recent years, accumulating lines of evidence point to a relevant role of ERK5 in the onset and progression of several types of cancer. In particular, it has been reported that ERK5 is a key signaling molecule involved in almost all the biological features of cancer cells so that its targeting is emerging as a promising strategy to suppress tumor growth and spreading. Based on that, in this review, we pinpoint the hallmark-specific role of ERK5 in cancer in order to identify biological features that will potentially benefit from ERK5 targeting.


2001 ◽  
Vol 69 (5) ◽  
pp. 3143-3149 ◽  
Author(s):  
S. Bonner ◽  
S. R. Yan ◽  
D. M. Byers ◽  
R. Bortolussi

ABSTRACT Neutrophils exposed to low concentrations of gram-negative lipopolysaccharide (LPS) become primed and have an increased oxidative response to a second stimulus (e.g., formyl-methionyl-leucyl-phenylalanine [fMLP]). In studies aimed at understanding newborn sepsis, we have shown that neutrophils of newborns are not primed in response to LPS. To further understand the processes involved in LPS-mediated priming of neutrophils, we explored the role of extracellular signal-related protein kinases (ERK 1 and 2) of the mitogen-activated protein kinase family. We found that LPS activated ERK 1 and 2 in cells of both adults and newborns and that activation was plasma dependent (maximal at ≥5%) through LPS-binding protein. Although fibronectin in plasma is required for LPS-mediated priming of neutrophils of adults assessed by fMLP-triggered oxidative burst, it was not required for LPS-mediated activation of ERK 1 and 2. LPS-mediated activation was dose and time dependent; maximal activation occurred with approximately 5 ng of LPS per ml and at 10 to 40 min. We used the inhibitor PD 98059 to study the role of ERK 1 and 2 in the LPS-primed fMLP-triggered oxidative burst. While Western blotting showed that 100 μM PD 98059 completely inhibited LPS-mediated ERK activation, oxidative response to fMLP by a chemiluminescence assay revealed that the same concentration inhibited the LPS-primed oxidative burst by only 40%. We conclude that in neutrophils, LPS-mediated activation of ERK 1 and 2 requires plasma and that this activation is not dependent on fibronectin. In addition, we found that the ERK pathway is not responsible for the lack of LPS priming in neutrophils of newborns but may be required for 40% of the LPS-primed fMLP-triggered oxidative burst in cells of adults.


Sign in / Sign up

Export Citation Format

Share Document