scholarly journals A surface epitope undergoing high-frequency phase variation is shared by Mycoplasma gallisepticum and Mycoplasma bovis.

1994 ◽  
Vol 62 (11) ◽  
pp. 4962-4968 ◽  
Author(s):  
D Yogev ◽  
D Menaker ◽  
K Strutzberg ◽  
S Levisohn ◽  
H Kirchhoff ◽  
...  
2003 ◽  
Vol 71 (3) ◽  
pp. 1265-1273 ◽  
Author(s):  
Florian Winner ◽  
Ivana Markovà ◽  
Peter Much ◽  
Albin Lugmair ◽  
Karin Siebert-Gulle ◽  
...  

ABSTRACT Mycoplasma gallisepticum is a flask-shaped organism that commonly induces chronic respiratory disease in chickens and infectious sinusitis in turkeys. Phenotypic switching in M. gallisepticum hemadsorption (HA) was found to correlate with phase variation of the GapA cytadhesin concurrently with that of the CrmA protein, which exhibits cytadhesin-related features and is encoded by a gene located downstream of the gapA gene as part of the same transcription unit. In clones derived from strain Rlow, detailed genetic analyses further revealed that on-off switching in GapA expression is governed by a reversible base substitution occurring at the beginning of the gapA structural gene. In HA− variants, this event generates a stop codon that results in the premature termination of GapA translation and consequently affects the expression of CrmA. Sequences flanking the mutation spot do not feature any repeated motifs that could account for error-prone mutation via DNA slippage and the exact mechanism underlying this high-frequency mutational event remains to be elucidated. An HA− mutant deficient in producing CrmA, mHAD3, was obtained by disrupting the crmA gene by using transposition mutagenesis. Despite a fully functional gapA gene, the amount of GapA detected in this mutant was considerably lower than in HA+ clonal variants, suggesting that, in absence of CrmA, GapA might be subjected to a higher turnover.


2001 ◽  
Vol 69 (8) ◽  
pp. 5177-5181 ◽  
Author(s):  
Qijing Zhang ◽  
Kim S. Wise

ABSTRACT A new mechanism expanding mycoplasmal surface diversity is described. Exposure of surface epitopes on a constitutively expressed membrane protein (P56) of Mycoplasma hominis was subject to high-frequency phase variation due to phase-variable expression of the P120 antigen and its selective masking of P56 epitopes. Phase-variable masking may confer previously unrealized adaptive capabilities on mycoplasmas.


2016 ◽  
Vol 82 (11) ◽  
pp. 3370-3383 ◽  
Author(s):  
P. Gaurivaud ◽  
E. Baranowski ◽  
C. Pau-Roblot ◽  
E. Sagné ◽  
C. Citti ◽  
...  

ABSTRACTMycoplasmas are minimal, wall-less bacteria but have retained the ability to secrete complex carbohydrate polymers that constitute a glycocalyx. In members of theMycoplasma mycoidescluster, which are important ruminant pathogens, the glycocalyx includes both cell-attached and cell-free polysaccharides. This report explores the potential secretion of polysaccharides byM. agalactiae, another ruminant pathogen that belongs to a distant phylogenetic group. Comparative genomic analyses showed thatM. agalactiaepossesses all the genes required for polysaccharide secretion. Notably, a putative synthase gene (gsmA) was identified, byin silicoreconstruction of the biosynthetic pathway, that could be involved in both polymerization and export of the carbohydrate polymers.M. agalactiaepolysaccharides were then purifiedin vitroand found to be mainly cell attached, with a linear β-(1→6)-glucopyranose structure [β-(1→6)-glucan]. Secretion of β-(1→6)-glucan was further shown to rely on the presence of a functionalgsmAgene, whose expression is subjected to high-frequency phase variation. This event is governed by the spontaneous intraclonal variation in length of a poly(G) tract located in thegsmAcoding sequence and was shown to occur in most of theM. agalactiaeclinical isolates tested in this study.M. agalactiaesusceptibility to serum-killing activity appeared to be dictated by ON/OFF switching of β-(1→6)-glucan secretion, suggesting a role of this phenomenon in survival of the pathogen when it invades the host bloodstream. Finally, β-(1→6)-glucan secretion was not restricted toM. agalactiaebut was detected also inM. mycoidessubsp.capriPG3T, another pathogen of small ruminants.IMPORTANCEMany if not all bacteria are able to secrete polysaccharides, either attached to the cell surface or exported unbound into the extracellular environment. Both types of polysaccharides can play a role in bacterium-host interactions. Mycoplasmas are no exception despite their poor overall metabolic capacity. We showed here thatM. agalactiaesecretes a capsular β-(1→6)-glucopyranose thanks to a specific glycosyltransferase with synthase activity. This secretion is governed by high-frequency ON/OFF phase variation that might be crucial in mycoplasma host dissemination, as cell-attached β-(1→6)-glucopyranose increases serum-killing susceptibility. Our results provide functional genetic data about mycoplasmal glycosyltransferases with dual functions, i.e., assembly and export of the sugar polymers across the cell membrane. Furthermore, we demonstrated that nonprotein epitopes can be subjected to surface antigenic variation in mycoplasmas. Finally, the present report contributes to unravel the role of secreted polysaccharides in the virulence and pathogenicity of these peculiar bacteria.


2020 ◽  
Author(s):  
Ola B Brynildsrud ◽  
Magnus N Osnes ◽  
Kevin C Ma ◽  
Yonatan H Grad ◽  
Michael Koomey ◽  
...  

AbstractThe gonococcal adenine methylases modA and modB, belonging to separate Type III restriction modification systems, are phase variable and could thus enable rapid adaptation to changing environments. However, the frequency of phase variation across transmission chains and the phenotypic impact of phase variation are largely unknown.Here we show that the repeat tracts enabling phase variation expand and contract at high rates in both modA and modB. For modB, multiple ON/OFF transition events were identified over the course of a single outbreak.A mixed effects model using population samples from Norway and a global meta-analysis collection indicates that modB in the OFF state is predictive of moderately decreased ceftriaxone susceptibility. Our findings suggest that modB orchestration of genome-wide 6-methyladenine modification controls the expression of genes modulating ceftriaxone susceptibility.ImportanceDespite significant progress, our current understanding of the genetic basis of antibiotic susceptibility remains incomplete. The gonococcal methylase modB is phase variable, meaning that it can be switched ON or OFF via contraction or expansion of a repeat tract in the gene during replication. We find that transitions between the ON and OFF state occur at high frequency. Furthermore, isolates harbouring modB in a configuration predicted to be inactive had decreased susceptibility to ceftriaxone, an antibiotic used to treat gonorrhea. This finding improves understanding of the genetic underpinnings of antibiotic resistance, but further work is needed to elucidate the mechanics and broader phenotypic effects of epigenetic modifications and transcription.


2001 ◽  
Vol 183 (19) ◽  
pp. 5698-5708 ◽  
Author(s):  
Innesa Lysnyansky ◽  
Yael Ron ◽  
David Yogev

ABSTRACT Mycoplasma bovis, the most important etiological agent of bovine mycoplasmosis, undergoes extensive antigenic variation of major and highly immunogenic surface lipoprotein antigens (Vsps). A family of 13 related but divergent vsp genes, which occur as single chromosomal copies, was recently found in the chromosome ofM. bovis. In the present study, the molecular mechanism mediating the high-frequency phase variation of two Vsps (VspA and VspC) as representatives of the Vsp family was investigated. Analysis of clonal isolates exhibiting phase transitions of VspA or of VspC (i.e., ON→OFF→ON) has shown that DNA inversions occur during Vsp phase variation. The upstream region of each vsp gene contains two sequence cassettes. The first (cassette no. 1), a 71-bp region upstream of the ATG initiation codon, exhibits 98% homology among all vsp genes, while the second (cassette no. 2), upstream of cassette no. 1, ranges in size from 50 to 180 bp and is more divergent. Examination of the ends of the inverted fragments during VspA or VspC phase variation revealed that in both cases, a change in the organization of vsp upstream cassettes involving three vsp genes had occurred. Primer extension and Northern blot analysis have shown that a specific cassette no. 2, designated A2, is an active promoter and that juxtaposition of this regulatory element to a silent vsp gene by DNA inversions allows transcription initiation of the recipient gene. Further genetic analysis revealed that phase variation of VspA or of VspC involves two site-specific DNA inversions occurring between inverted copies of a specific 35-bp sequence present within the conserved cassette no. 1. A model for the control of Vsp phase variation is proposed.


2005 ◽  
Vol 187 (7) ◽  
pp. 2519-2525 ◽  
Author(s):  
Brenda L. Grau ◽  
Margaret C. Henk ◽  
Gregg S. Pettis

ABSTRACT The marine bacterium Vibrio vulnificus is a human pathogen that can spontaneously switch between virulent opaque and avirulent translucent phenotypes. Here, we document an additional form, the rugose variant, which produces copious biofilms and which may contribute both to pathogenicity of V. vulnificus and to its survival under adverse environmental conditions.


2021 ◽  
Vol 9 (2) ◽  
pp. 244
Author(s):  
Vishal Gor ◽  
Ryosuke L. Ohniwa ◽  
Kazuya Morikawa

Phase variation (PV) is a well-known phenomenon of high-frequency reversible gene-expression switching. PV arises from genetic and epigenetic mechanisms and confers a range of benefits to bacteria, constituting both an innate immune strategy to infection from bacteriophages as well as an adaptation strategy within an infected host. PV has been well-characterized in numerous bacterial species; however, there is limited direct evidence of PV in the human opportunistic pathogen Staphylococcus aureus. This review provides an overview of the mechanisms that generate PV and focuses on earlier and recent findings of PV in S. aureus, with a brief look at the future of the field.


Sign in / Sign up

Export Citation Format

Share Document