scholarly journals Differential Transcription of the tcpPHOperon Confers Biotype-Specific Control of the Vibrio cholerae ToxR Virulence Regulon

1999 ◽  
Vol 67 (10) ◽  
pp. 5117-5123 ◽  
Author(s):  
Yvette M. Murley ◽  
Patricia A. Carroll ◽  
Karen Skorupski ◽  
Ronald K. Taylor ◽  
Stephen B. Calderwood

ABSTRACT Epidemic strains of Vibrio cholerae O1 are divided into two biotypes, classical and El Tor. In both biotypes, regulation of virulence gene expression depends on a cascade in which ToxR activates expression of ToxT, and ToxT activates expression of cholera toxin and other virulence genes. In the classical biotype, maximal expression of this ToxR regulon in vitro occurs at 30°C at pH 6.5 (ToxR-inducing conditions), whereas in the El Tor biotype, production of these virulence genes only occurs under very limited conditions and not in response to temperature and pH; this difference between biotypes is mediated at the level of toxT transcription. In the classical biotype, two other proteins, TcpP and TcpH, are needed for maximal toxT transcription. Transcription oftcpPH in the classical biotype is regulated by pH and temperature independently of ToxR or ToxT, suggesting that TcpP and TcpH couple environmental signals to transcription of toxT. In this study, we show a near absence of tcpPH message in the El Tor biotype under ToxR-inducing conditions of temperature and pH. However, once expressed, El Tor TcpP and TcpH appear to be as effective as classical TcpP and TcpH in activating toxTtranscription. These results suggest that differences in regulation of virulence gene expression between the biotypes of V. cholerae primarily result from differences in expression oftcpPH message in response to environmental signals. We present an updated model for control of the ToxR virulence regulon inV. cholerae.

1999 ◽  
Vol 181 (14) ◽  
pp. 4250-4256 ◽  
Author(s):  
Gabriela Kovacikova ◽  
Karen Skorupski

ABSTRACT We describe here a new member of the LysR family of transcriptional regulators, AphB, which is required for activation of the Vibrio cholerae ToxR virulence cascade. AphB activates the transcription of the tcpPH operon in response to environmental stimuli, and this process requires cooperation with a second protein, AphA. The expression of neither aphA or aphB is strongly regulated by environmental stimuli, raising the possibility that the activities of the proteins themselves may be influenced under various conditions. Strains of the El Tor biotype of V. choleraetypically exhibit lower expression of ToxR-regulated virulence genes in vitro than classical strains and require specialized culture conditions (AKI medium) to induce high-level expression. We show here that expression of aphB from the tac promoter in El Tor biotype strains dramatically increases virulence gene expression to levels similar to those observed in classical strains under all growth conditions examined. These results suggest that AphB plays a role in the differential regulation of virulence genes between the two disease-causing biotypes.


2020 ◽  
Vol 139 ◽  
pp. 153-160
Author(s):  
S Peeralil ◽  
TC Joseph ◽  
V Murugadas ◽  
PG Akhilnath ◽  
VN Sreejith ◽  
...  

Luminescent Vibrio harveyi is common in sea and estuarine waters. It produces several virulence factors and negatively affects larval penaeid shrimp in hatcheries, resulting in severe economic losses to shrimp aquaculture. Although V. harveyi is an important pathogen of shrimp, its pathogenicity mechanisms have yet to be completely elucidated. In the present study, isolates of V. harveyi were isolated and characterized from diseased Penaeus monodon postlarvae from hatcheries in Kerala, India, from September to December 2016. All 23 tested isolates were positive for lipase, phospholipase, caseinase, gelatinase and chitinase activity, and 3 of the isolates (MFB32, MFB71 and MFB68) showed potential for significant biofilm formation. Based on the presence of virulence genes, the isolates of V. harveyi were grouped into 6 genotypes, predominated by vhpA+ flaB+ ser+ vhh1- luxR+ vopD- vcrD+ vscN-. One isolate from each genotype was randomly selected for in vivo virulence experiments, and the LD50 ranged from 1.7 ± 0.5 × 103 to 4.1 ± 0.1 × 105 CFU ml-1. The expression of genes during the infection in postlarvae was high in 2 of the isolates (MFB12 and MFB32), consistent with the result of the challenge test. However, in MFB19, even though all genes tested were present, their expression level was very low and likely contributed to its lack of virulence. Because of the significant variation in gene expression, the presence of virulence genes alone cannot be used as a marker for pathogenicity of V. harveyi.


2009 ◽  
Vol 77 (9) ◽  
pp. 4111-4120 ◽  
Author(s):  
Basel H. Abuaita ◽  
Jeffrey H. Withey

ABSTRACT Vibrio cholerae is a gram-negative bacterium that is the causative agent of cholera, a severe diarrheal illness. The two biotypes of V. cholerae O1 capable of causing cholera, classical and El Tor, require different in vitro growth conditions for induction of virulence gene expression. Growth under the inducing conditions or infection of a host initiates a complex regulatory cascade that results in production of ToxT, a regulatory protein that directly activates transcription of the genes encoding cholera toxin (CT), toxin-coregulated pilus (TCP), and other virulence genes. Previous studies have shown that sodium bicarbonate induces CT expression in the V. cholerae El Tor biotype. However, the mechanism for bicarbonate-mediated CT induction has not been defined. In this study, we demonstrate that bicarbonate stimulates virulence gene expression by enhancing ToxT activity. Both the classical and El Tor biotypes produce inactive ToxT protein when they are cultured statically in the absence of bicarbonate. Addition of bicarbonate to the culture medium does not affect ToxT production but causes a significant increase in CT and TCP expression in both biotypes. Ethoxyzolamide, a potent carbonic anhydrase inhibitor, inhibits bicarbonate-mediated virulence induction, suggesting that conversion of CO2 into bicarbonate by carbonic anhydrase plays a role in virulence induction. Thus, bicarbonate is the first positive effector for ToxT activity to be identified. Given that bicarbonate is present at high concentration in the upper small intestine where V. cholerae colonizes, bicarbonate is likely an important chemical stimulus that V. cholerae senses and that induces virulence during the natural course of infection.


2017 ◽  
Vol 199 (7) ◽  
Author(s):  
Gabriela Kovacikova ◽  
Wei Lin ◽  
Ronald K. Taylor ◽  
Karen Skorupski

ABSTRACT FadR is a master regulator of fatty acid (FA) metabolism that coordinates the pathways of FA degradation and biosynthesis in enteric bacteria. We show here that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expression of the virulence cascade by influencing both the transcription and the posttranslational regulation of the master virulence regulator ToxT. FadR is a transcriptional regulator that represses the expression of genes involved in FA degradation, activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and also activates the expression of two operons involved in saturated FA (SFA) biosynthesis. Since FadR does not bind directly to the toxT promoter, we determined whether the regulation of any of its target genes indirectly influenced ToxT. This was accomplished by individually inserting a double point mutation into the FadR-binding site in the promoter of each target gene, thereby preventing their activation or repression. Although preventing FadR-mediated activation of fabA, which encodes the enzyme that carries out the first step in UFA biosynthesis, did not significantly influence either the transcription or the translation of ToxT, it reduced its levels and prevented virulence gene expression. In the mutant strain unable to carry out FadR-mediated activation of fabA, expressing fabA ectopically restored the levels of ToxT and virulence gene expression. Taken together, the results presented here indicate that V. cholerae FadR influences the virulence cascade in the El Tor biotype by modulating the levels of ToxT via two different mechanisms. IMPORTANCE Fatty acids (FAs) play important roles in membrane lipid homeostasis and energy metabolism in all organisms. In Vibrio cholerae, the causative agent of the acute intestinal disease cholera, they also influence virulence by binding into an N-terminal pocket of the master virulence regulator, ToxT, and modulating its activity. FadR is a transcription factor that coordinately controls the pathways of FA degradation and biosynthesis in enteric bacteria. This study identifies a new link between FA metabolism and virulence in the El Tor biotype by showing that FadR influences both the transcription and posttranslational regulation of the master virulence regulator ToxT by two distinct mechanisms.


2000 ◽  
Vol 182 (11) ◽  
pp. 3228-3238 ◽  
Author(s):  
Gabriela Kovacikova ◽  
Karen Skorupski

ABSTRACT Vibrio cholerae strains of the classical biotype express the genes encoding cholera toxin (CT) and toxin-coregulated pilus (TCP) under a variety of environmental conditions in vitro, whereas El Tor biotype strains express these genes only under specialized culture conditions. We show here that a single base-pair difference at positions −65 and −66 of the classical and El TortcpPH promoters, respectively, is responsible for the differential regulation of virulence gene expression in these two disease-causing biotypes. Analysis of tcpP-lacZ fusions in both V. cholerae and Escherichia coli indicated that transcriptional activation of the El Tor tcpPHpromoter by the LysR regulator AphB was significantly reduced relative to that of the classical promoter. Reciprocal exchange of thetcpPH promoter between the two biotypes in V. cholerae showed that the ability to activate the transcription oftcpPH is not dependent on the biotype of the strain per se but on the tcpPH promoter itself. Classical and El TortcpP-lacZ promoter chimeras in E. colilocalized the region responsible for the differential activation oftcpPH by AphB to within 75 bp of the transcriptional start site. Individual base-pair changes within this region showed that the presence of either an A or a G at position −65 or −66 conferred the classical or El Tor, respectively, pattern of tcpPHactivation by AphB. Reciprocal exchange of these base pairs between biotypes in V. cholerae switched the biotype-specific pattern of expression of tcpPH as well as the production of CT and TCP in response to environmental stimuli.


2010 ◽  
Vol 192 (17) ◽  
pp. 4300-4310 ◽  
Author(s):  
Sanjat Kanjilal ◽  
Robert Citorik ◽  
Regina C. LaRocque ◽  
Marco F. Ramoni ◽  
Stephen B. Calderwood

ABSTRACT Vibrio cholerae is a Gram-negative bacillus that is the causative agent of cholera. Pathogenesis in vivo occurs through a series of spatiotemporally controlled events under the control of a gene cascade termed the ToxR regulon. Major genes in the ToxR regulon include the master regulators toxRS and tcpPH, the downstream regulator toxT, and virulence factors, the ctxAB and tcpA operons. Our current understanding of the dynamics of virulence gene expression is limited to microarray analyses of expression at selected time points. To better understand this process, we utilized a systems biology approach to examine the temporal regulation of gene expression in El Tor V. cholerae grown under virulence-inducing conditions in vitro (AKI medium), using high-resolution time series genomic profiling. Results showed that overall gene expression in AKI medium mimics that of in vivo studies but with less clear temporal separation between upstream regulators and downstream targets. Expression of toxRS was unaffected by growth under virulence-inducing conditions, but expression of toxT was activated shortly after switching from stationary to aerating conditions. The tcpA operon was also activated early during mid-exponential-phase growth, while the ctxAB operon was turned on later, after the rise in toxT expression. Expression of ctxAB continued to rise despite an eventual decrease in toxT. Cluster analysis of gene expression highlighted 15 hypothetical genes and six genes related to environmental information processing that represent potential new members of the ToxR regulon. This study applies systems biology tools to analysis of gene expression of V. cholerae in vitro and provides an important comparator for future studies done in vivo.


Author(s):  
Maryam Mehdizadeh ◽  
Mojgan Sheikhpour ◽  
Iman Salahshourifar ◽  
Seyed Davar Siadat ◽  
Parvaneh Saffarian

Background: We aimed to prepare a nanofluid, containing f-MWCNTs, and investigate the antibacterial efficacy of f-MWCNTs+ ciprofloxacin (cip) on Klebsiella pneumoniae by evaluating the virulence gene expression. Methods: This study was carried out from 2019 to 2020, in the Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran. The nanofluid containing antibiotic and f-MWCNTs were prepared by the ultrasonic method. The minimum inhibitory concentrations (MICs) of ciprofloxacin and f-MWCNTs were determined using the broth micro dilution MIC tests. For examining the antibacterial effects, the expression level of virulence genes, under the influence of f-MWCNTs, was evaluated by a real-time PCR. Results: The effect of 8 µg/ml ciprofloxacin + 400 µg/ml f-MWCNTs, completely inhibited the growth of the resistant isolate of K. pneumoniae, while, in the ATCC 700,603 isolate, 2 µg/ml ciprofloxacin with 100 µg/ml f-MWCNT could inhibit a bacterial growth. In the resistant K. pneumoniae clinical isolate, after f-MWCNT+cip treatment, the expression of fimA, fimD, wza, and wzi genes was significantly downregulated, compared to the ciprofloxacin treatment, and upregulated, compared to the negative control. For the ATCC 700,603 isolate treated with f-MWCNT+cip, the expression of fimA, fimD and wza virulence genes showed upregulation, compared to the negative control and downregulated in comparison with the ciprofloxacin treatment. Conclusion: Simultaneous treatment of resistant isolate of K. pneumoniae with f-MWCNTs +antibiotic could improve the effectiveness of antibiotic at lower doses, due to the reduced expression of virulence genes in comparison with antibiotic treatment, besides the increased cell wall permeability to antibiotics.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Aman Kumar ◽  
Vanessa Sperandio

ABSTRACTMicrobial establishment within the gastrointestinal (GI) tract requires surveillance of the gut biogeography. The gut microbiota coordinates behaviors by sensing host- or microbiota-derived signals. Here we show for the first time that microbiota-derived indole is highly prevalent in the lumen compared to the intestinal tissue. This difference in indole concentration plays a key role in modulating virulence gene expression of the enteric pathogens enterohemorrhagicEscherichia coli(EHEC) andCitrobacter rodentium. Indole decreases expression of genes within the locus of enterocyte effacement (LEE) pathogenicity island, which is essential for these pathogens to form attaching and effacing (AE) lesions on enterocytes. We synthetically altered the concentration of indole in the GI tracts of mice by employing mice treated with antibiotics to deplete the microbiota and reconstituted with indole-producing commensalBacteroides thetaiotaomicron(B. theta) or aB. thetaΔtnaAmutant (does not produce indole) or by engineering an indole-producingC. rodentiumstrain. This allowed us to assess the role of self-produced versus microbiota-produced indole, and the results show that decreased indole concentrations promote bacterial pathogenesis, while increased levels of indole decrease bacterial virulence gene expression. Moreover, we identified the bacterial membrane-bound histidine sensor kinase (HK) CpxA as an indole sensor. Enteric pathogens sense a gradient of indole concentrations in the gut to probe different niches and successfully establish an infection.IMPORTANCEPathogens sense and respond to several small molecules within the GI tract to modulate expression of their virulence repertoire. Indole is a signaling molecule produced by the gut microbiota. Here we show that indole concentrations are higher in the lumen, where the microbiota is present, than in the intestinal tissue. The enteric pathogens EHEC andC. rodentiumsense indole to downregulate expression of their virulence genes, as a read-out of the luminal compartment. We also identified the bacterial membrane-bound HK CpxA as an indole sensor. This regulation ensures that EHEC andC. rodentiumexpress their virulence genes only at the epithelial lining, which is the niche they colonize.


Sign in / Sign up

Export Citation Format

Share Document