scholarly journals Structural and Genetic Analyses of O Polysaccharide from Actinobacillus actinomycetemcomitans Serotype f

2001 ◽  
Vol 69 (9) ◽  
pp. 5375-5384 ◽  
Author(s):  
Jeffrey B. Kaplan ◽  
Malcolm B. Perry ◽  
Leann L. MacLean ◽  
David Furgang ◽  
Mark E. Wilson ◽  
...  

ABSTRACT The oral bacterium Actinobacillus actinomycetemcomitans is implicated as a causative agent of localized juvenile periodontitis (LJP). A. actinomycetemcomitans is classified into five serotypes (a to e) corresponding to five structurally and antigenically distinct O polysaccharide (O-PS) components of their respective lipopolysaccharide molecules. Serotype b has been reported to be the dominant serotype isolated from LJP patients. We determined the lipopolysaccharide O-PS structure from A. actinomycetemcomitans CU1000, a strain isolated from a 13-year-old African-American female with LJP which had previously been classified as serotype b. The O-PS of strain CU1000 consisted of a trisaccharide repeating unit composed ofl-rhamnose and 2-acetamido-2-deoxy-d-galactose (molar ratio, 2:1) with the structure →2)-α-l-Rhap-(1–3)-2-O-(β-d-GalpNAc)-α-l-Rhap-(1→. O-PS from strain CU1000 was structurally and antigenically distinct from the O-PS molecules of the five known A. actinomycetemcomitans serotypes. Strain CU1000 was mutagenized with transposon IS903φkan, and three mutants that were deficient in O-PS synthesis were isolated. All three transposon insertions mapped to a single 1-kb region on the chromosome. The DNA sequence of a 13.1-kb region surrounding these transposon insertions contained a cluster of 14 open reading frames that was homologous to gene clusters responsible for the synthesis of A. actinomycetemcomitans serotype b, c, and e O-PS antigens. The CU1000 gene cluster contained two genes that were not present in serotype-specific O-PS antigen clusters of the other five knownA. actinomycetemcomitans serotypes. These data indicate that strain CU1000 should be assigned to a new A. actinomycetemcomitans serotype, designated serotype f. A PCR assay using serotype-specific PCR primers showed that 3 out of 20 LJP patients surveyed (15%) harbored A. actinomycetemcomitans strains carrying the serotype f gene cluster. The finding of an A. actinomycetemcomitansserotype showing serological cross-reactivity with anti-serotype b-specific antiserum suggests that a reevaluation of strains previously classified as serotype b may be warranted.

1999 ◽  
Vol 37 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Francisco Hideo Aoki ◽  
Tamae Imai ◽  
Reiko Tanaka ◽  
Yuzuru Mikami ◽  
Hideaki Taguchi ◽  
...  

Thirty-three strains of Cryptococcus neoformans were isolated from clinical specimens, including specimens from AIDS patients in Brazil, and were classified into two serotypes; we detected 31 and 2 strains of serotypes A and B, respectively. Random amplified polymorphic DNA (RAPD) fingerprint pattern analyses of these strains of serotypes A and B showed that the patterns were similar for strains of each serotype when three 10-mer primers were used as the RAPD primers. Comparative studies of the fingerprint patterns of the study isolates with those of the reference strains also showed that the RAPD patterns for strains of each serotype were related and that most of the fingerprint bands existed commonly for all strains of each serotype tested. The common RAPD bands (an approximately 700-bp band for serotype A and an approximately 450-bp band for serotype B) were extracted and the DNA sequences were determined. Using this information, we prepared two and one PCR primer pairs which were expected to be specific for C. neoformans serotypes A and B, respectively. Use of each PCR primer combination thus prepared for serotype A or B was 100% successful in identifying the respectiveC. neoformans serotypes, including the 33 clinical isolates tested in the present study. Among these combinations, one for serotype A was found to amplify DNA from C. neoformans serotype B as well as serotype A. Serotype B-specific PCR primer pairs amplified DNA from not only serotype B strains but also from serotype C strains. The usefulness of other serotype-specific PCR primers for clinical C. neoformans isolates is discussed.


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1859-1867 ◽  
Author(s):  
Karin Denger ◽  
Jürgen Ruff ◽  
David Schleheck ◽  
Alasdair M. Cook

The Gram-positive bacteria Rhodococcus opacus ISO-5 and Rhodococcus sp. RHA1 utilized taurine (2-aminoethanesulfonate) as the sole source of carbon or of nitrogen or of sulfur for growth. Different gene clusters and enzymes were active under these different metabolic situations. Under carbon- or nitrogen-limited conditions three enzymes were induced, though to different levels: taurine-pyruvate aminotransferase (Tpa), alanine dehydrogenase (Ald) and sulfoacetaldehyde acetyltransferase (Xsc). The specific activities of these enzymes in R. opacus ISO-5 were sufficient to explain the growth rates under the different conditions. These three enzymes were purified and characterized, and the nature of each reaction was confirmed. Analyses of the genome of Rhodococcus sp. RHA1 revealed a gene cluster, tauR-ald-tpa, putatively encoding regulation and oxidation of taurine, located 20 kbp from the xsc gene and separate from two candidate phosphotransacetylase (pta) genes, as well as many candidate ABC transporters (tauBC). PCR primers allowed the amplification and sequencing of the tauR-ald-tpa gene cluster and the xsc gene in R. opacus ISO-5. The N-terminal sequences of the three tested proteins matched the derived amino acid sequences of the corresponding genes. The sequences of the four genes found in each Rhodococcus strain shared high degrees of identity (>95 % identical positions). RT-PCR studies proved transcription of the xsc gene when taurine was the source of carbon or of nitrogen. Under sulfur-limited conditions no xsc mRNA was generated and no Xsc was detected. Taurine dioxygenase (TauD), the enzyme catalysing the anticipated desulfonative reaction when taurine sulfur is assimilated, was presumed to be present because oxygen-dependent taurine disappearance was demonstrated with taurine-grown cells only. A putative tauD gene (with three other candidates) was detected in strain ISO-5. Regulation of the different forms of metabolism of taurine remains to be elucidated.


2007 ◽  
Vol 20 (5) ◽  
pp. 559-567 ◽  
Author(s):  
Ernst Weber ◽  
Carolin Berger ◽  
Ulla Bonas ◽  
Ralf Koebnik

The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria possesses a type III secretion (T3S) system which is encoded in the 23-kb hypersensitive response and pathogenicity (hrp) gene cluster. The T3S system is essential for pathogenicity in susceptible hosts and the induction of the hypersensitive response in resistant plants. In this study, we revisited the operon structure of the right part of the hrp gene cluster. Based on complementation experiments of transposon insertions and reverse-transcription polymerase chain reaction analyses, the hrpD operon contains hrcQ, hrcR, hrcS, and hpaA, whereas hrcD, hrpD6, and hrpE belong to the hrpE operon. We determined the transcriptional start site of the hrpE operon and showed that there is a promoter upstream of hrcD containing a plant-inducible promoter box. Conserved secondary mRNA structures in the intergenic region between hrpD6 and hrpE suggest a posttranscriptional regulated expression of hrpE. Based on comparisons of different hrp gene clusters and the analysis of evolutionary rates, we propose that the hrpE transcriptional unit was integrated into the hrp gene cluster at a later time.


1996 ◽  
Vol 42 (7) ◽  
pp. 1092-1099 ◽  
Author(s):  
H M Qazzaz ◽  
S A Jortani ◽  
J M Poole ◽  
R Valdes

Abstract Digoxin-like immunoreactive factor (DLIF) from adrenal glands is an endogenous ligand structurally related to the plant-derived cardiac glycoside digoxin. Cardiac glycosides regulate the activity of the sodium pump and thus play key roles in disease processes involving regulation of ion transport. We now report the discovery of an endogenous dihydro-DLIF analogous to dihydrodigoxin. We used HPLC, ultraviolet spectrophotometry, and cross-reactivity with two antibodies, one specific for digoxin and one for dihydrodigoxin, to support the hypothesis that dihydro-DLIF contains a chemically reduced lactone ring. The spectral absorbance maximum for dihydro-DLIF is at 196 nm, identical to dihydrodigoxin. DLIF and dihydro-DLIF are 975- and 2588-fold less immunoreactive than digoxin and dihydrodigoxin for their respective antibodies. The molar ratio of dihydro-DLIF to DLIF is approximately 5.3 in bovine adrenocortical tissue and approximately 0.38 in human serum. Dihydrodigoxin (reduced lactone ring) added to microsomes isolated from bovine adrenal cortex produced a 4.5-fold increase in digoxin-like immunoreactivity (oxidized lactone ring) after 3 h of incubation. The biotransformation is likely mediated by a cytochrome P-450 NADPH-dependent process. Our findings demonstrate the presence of a dihydro-DLIF in mammals and suggest a metabolic route for synthesis of endogenous DLIF in mammalian tissue.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Woo Cheol Lee ◽  
Sungjae Choi ◽  
Ahjin Jang ◽  
Kkabi Son ◽  
Yangmee Kim

AbstractSome Gram-negative bacteria harbor lipids with aryl polyene (APE) moieties. Biosynthesis gene clusters (BGCs) for APE biosynthesis exhibit striking similarities with fatty acid synthase (FAS) genes. Despite their broad distribution among pathogenic and symbiotic bacteria, the detailed roles of the metabolic products of APE gene clusters are unclear. Here, we determined the crystal structures of the β-ketoacyl-acyl carrier protein (ACP) reductase ApeQ produced by an APE gene cluster from clinically isolated virulent Acinetobacter baumannii in two states (bound and unbound to NADPH). An in vitro visible absorption spectrum assay of the APE polyene moiety revealed that the β-ketoacyl-ACP reductase FabG from the A. baumannii FAS gene cluster cannot be substituted for ApeQ in APE biosynthesis. Comparison with the FabG structure exhibited distinct surface electrostatic potential profiles for ApeQ, suggesting a positively charged arginine patch as the cognate ACP-binding site. Binding modeling for the aryl group predicted that Leu185 (Phe183 in FabG) in ApeQ is responsible for 4-benzoyl moiety recognition. Isothermal titration and arginine patch mutagenesis experiments corroborated these results. These structure–function insights of a unique reductase in the APE BGC in comparison with FAS provide new directions for elucidating host–pathogen interaction mechanisms and novel antibiotics discovery.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1489
Author(s):  
Tammy Stackhouse ◽  
Sumyya Waliullah ◽  
Alfredo D. Martinez-Espinoza ◽  
Bochra Bahri ◽  
Emran Ali

Dollar spot is one of the most destructive diseases in turfgrass. The causal agents belong to the genus Clarireedia, which are known for causing necrotic, sunken spots in turfgrass that coalesce into large damaged areas. In low tolerance settings like turfgrass, it is of vital importance to rapidly detect and identify the pathogens. There are a few methods available to identify the genus Clarireedia, but none of those are rapid enough and characterize down to the species level. This study produced a co-dominant cleaved amplified polymorphic sequences (CAPS) test that differentiates between C. jacksonii and C. monteithiana, the two species that cause dollar spot disease within the United States. The calmodulin gene (CaM) was targeted to generate Clarireedia spp. specific PCR primers. The CAPS assay was optimized and tested for specificity and sensitivity using DNA extracted from pure cultures of two Clarireedia spp. and other closely related fungal species. The results showed that the newly developed primer set could amplify both species and was highly sensitive as it detected DNA concentrations as low as 0.005 ng/µL. The assay was further validated using direct PCR to speed up the diagnosis process. This drastically reduces the time needed to identify the dollar spot pathogens. The resulting assay could be used throughout turfgrass settings for a rapid and precise identification method in the US.


Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 19 ◽  
Author(s):  
Maria B. Nowakowska ◽  
François P. Douillard ◽  
Miia Lindström

The botulinum neurotoxin (BoNT) has been extensively researched over the years in regard to its structure, mode of action, and applications. Nevertheless, the biological roles of four proteins encoded from a number of BoNT gene clusters, i.e., OrfX1-3 and P47, are unknown. Here, we investigated the diversity of orfX-p47 gene clusters using in silico analytical tools. We show that the orfX-p47 cluster was not only present in the genomes of BoNT-producing bacteria but also in a substantially wider range of bacterial species across the bacterial phylogenetic tree. Remarkably, the orfX-p47 cluster was consistently located in proximity to genes coding for various toxins, suggesting that OrfX1-3 and P47 may have a conserved function related to toxinogenesis and/or pathogenesis, regardless of the toxin produced by the bacterium. Our work also led to the identification of a putative novel BoNT-like toxin gene cluster in a Bacillus isolate. This gene cluster shares striking similarities to the BoNT cluster, encoding a bont/ntnh-like gene and orfX-p47, but also differs from it markedly, displaying additional genes putatively encoding the components of a polymorphic ABC toxin complex. These findings provide novel insights into the biological roles of OrfX1, OrfX2, OrfX3, and P47 in toxinogenesis and pathogenesis of BoNT-producing and non-producing bacteria.


2021 ◽  
Vol 85 (3) ◽  
pp. 714-721
Author(s):  
Risa Takao ◽  
Katsuyuki Sakai ◽  
Hiroyuki Koshino ◽  
Hiroyuki Osada ◽  
Shunji Takahashi

ABSTRACT Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.


Sign in / Sign up

Export Citation Format

Share Document