scholarly journals Helicobacter pylori Does Not Require Lewis X or Lewis Y Expression To Colonize C3H/HeJ mice

2002 ◽  
Vol 70 (6) ◽  
pp. 3073-3079 ◽  
Author(s):  
Tohru Takata ◽  
Emad El-Omar ◽  
Margarita Camorlinga ◽  
Stuart A. Thompson ◽  
Yutaka Minohara ◽  
...  

ABSTRACT Helicobacter pylori strains frequently express Lewis X (Lex) and/or Ley on their cell surfaces as constituents of the O antigens of their lipopolysaccharide molecules. To assess the effect of Lex and Ley expression on the ability of H. pylori to colonize the mouse stomach and to adhere to epithelial cells, isogenic mutants were created in which fucT1 alone or fucT1 and fucT2, which encode the fucosyl transferases necessary for Lex and Ley expression, were deleted. C3H/HeJ mice were experimentally challenged with either wild-type 26695 H. pylori or its isogenic mutants. All strains, whether passaged in the laboratory or recovered after mouse passage, colonized the mice well and without consistent differences. During colonization by the mutants, there was no reversion to wild type. Similarly, adherence to AGS and KatoIII cells was unaffected by the mutations. Together, these findings indicate that Le expression is not necessary for mouse gastric colonization or for H. pylori adherence to epithelial cells.

2009 ◽  
Vol 21 (06) ◽  
pp. 433-436
Author(s):  
Chi-Chang Lin ◽  
Sheng-Kai Li ◽  
Bor-Shyang Sheu ◽  
Hsien-Chang Chang

A simple, fast, real-time, and nondestructive analysis of protein expression in biological samples, such as membranes, based on dielectrophoresis is described. On the basis of the distinct differences in the dielectrophoretic properties of individual cell types, the wild-type BabA-positive Helicobacter pylori isolates and its BabA-negative isogenic mutant can be identified and separated. The herein-presented approach of using microelectrodes should be an easy-to-use, cheap, and rapid alternative to separate and distinguish the presence or absence of important outer-membrane proteins.


2008 ◽  
Vol 57 (2) ◽  
pp. 145-150 ◽  
Author(s):  
Richard H. Argent ◽  
Rachael J. Thomas ◽  
Darren P. Letley ◽  
Michael G. Rittig ◽  
Kim R. Hardie ◽  
...  

The Helicobacter pylori virulence factors CagA and VacA are implicated in the development of gastroduodenal diseases. Most strains possessing CagA also possess the more virulent vacuolating form of VacA. This study assessed the significance of possession of both virulence factors in terms of their effect on gastric epithelial cells, using a set of minimally passaged, isogenic VacA, CagA and CagE mutants in H. pylori strains 60190 and 84-183. The cagA and cagE mutants were found to significantly increase VacA-induced vacuolation of epithelial cells, and the vacA mutants significantly increased CagA-induced cellular elongations, compared with wild-type strains, indicating that CagA reduces vacuolation and VacA reduces hummingbird formation. Although epithelial cells incubated with the wild-type H. pylori strains may display both vacuolation and hummingbird formation, it was found that (i) hummingbird length was significantly reduced in vacuolated cells compared with those without vacuolation; (ii) the number of vacuoles was significantly reduced in vacuolated cells with hummingbird formation compared with those without hummingbirds; and (iii) cells displaying extensive vacuolation did not subsequently form hummingbirds and vice versa. VacA did not affect the phosphorylation of CagA. These data show that VacA and CagA downregulate each other's effects on epithelial cells, potentially allowing H. pylori interaction with cells whilst avoiding excessive cellular damage.


2004 ◽  
Vol 48 (10) ◽  
pp. 3782-3788 ◽  
Author(s):  
Masaaki Minami ◽  
Takafumi Ando ◽  
Shin-nosuke Hashikawa ◽  
Keizo Torii ◽  
Tadao Hasegawa ◽  
...  

ABSTRACT Glycine is the simplest amino acid and is used as a metabolic product in some bacteria. However, an excess of glycine inhibits the growth of many bacteria, and it is used as a nonspecific antiseptic agent due to its low level of toxicity in animals. The effect of glycine on Helicobacter pylori is not precisely known. The present study was conducted to investigate (i) the effect of glycine on clarithromycin (CLR)-resistant and -susceptible strains of H. pylori, (ii) the effect of glycine in combination with amoxicillin (AMX), and (iii) the postantibiotic effect (PAE). The MIC at which 90% of strains are inhibited for glycine was almost 2.5 mg/ml for 31 strains of H. pylori, including CLR-resistant strains. We constructed isogenic CLR-resistant mutant strains by natural transformation and investigated the difference between clinical wild-type strains and isogenic mutants. There were no differences in the MICs between CLR-resistant and -susceptible strains or between clinical wild-type and mutant strains. The combination of AMX and glycine showed synergistic activity, with the minimum bactericidal concentration of AMX with glycine decreasing to 1/10 that of AMX alone. Glycine showed no PAE against H. pylori. These results suggest that glycine may be a useful antimicrobial agent against H. pylori not only alone but also in combination with antibacterial drugs for the treatment of H. pylori-associated diseases. Glycine may represent a component of a new type of eradication therapy for CLR-resistant H. pylori.


2000 ◽  
Vol 192 (11) ◽  
pp. 1601-1610 ◽  
Author(s):  
Keiji Ogura ◽  
Shin Maeda ◽  
Masafumi Nakao ◽  
Takeshi Watanabe ◽  
Mayumi Tada ◽  
...  

Helicobacter pylori infection induces various gastroduodenal diseases. We examined the role of two genes, vacA and cagE, in the gastric pathogenesis induced by H. pylori using a long-term (62 wk) animal model. Reportedly, both genes are associated with the virulence of H. pylori: vacA encodes vacuolating cytotoxin, and cagE, with other genes in the cag pathogenicity islands, encodes a type IV secretion system. Mongolian gerbils were challenged in this study by a wild-type TN2 strain and its isogenic mutants of cagE or vacA. The wild-type and vacA mutants induced severe gastritis, whereas cagE mutants induced far milder changes. Gastric ulcer was induced at the highest rate (22/23) by the wild-type TN2, followed by the vacA mutant (19/28). No ulcer was found in the gerbils infected with the cagE mutant (0/27) or in controls (0/27). Intestinal metaplasia was also found in the gerbils infected with the wild-type (14/23) or vacA mutant (15/28). Gastric cancer developed in one gerbil with wild-type infection and in one with vacA mutant infection. In conclusion, the knocking out of the cagE gene deprived wild-type H. pylori of the pathogenicity for gastritis and gastric ulcer, suggesting that the secretion system encoded by cag pathogenicity island genes plays an essential role.


2011 ◽  
Vol 79 (7) ◽  
pp. 2535-2543 ◽  
Author(s):  
Jana N. Radin ◽  
Christian González-Rivera ◽  
Susan E. Ivie ◽  
Mark S. McClain ◽  
Timothy L. Cover

ABSTRACTHelicobacter pyloriis a Gram-negative bacterium that colonizes the human stomach and contributes to the development of peptic ulcer disease and gastric cancer. The secreted pore-forming toxin VacA is one of the major virulence factors ofH. pylori. In the current study, we show that AZ-521 human gastric epithelial cells are highly susceptible to VacA-induced cell death. Wild-type VacA causes death of these cells, whereas mutant VacA proteins defective in membrane channel formation do not. Incubation of AZ-521 cells with wild-type VacA results in cell swelling, poly(ADP-ribose) polymerase (PARP) activation, decreased intracellular ATP concentration, and lactate dehydrogenase (LDH) release. VacA-induced death of these cells is a caspase-independent process that results in cellular release of histone-binding protein high mobility group box 1 (HMGB1), a proinflammatory protein. These features are consistent with the occurrence of cell death through a programmed necrosis pathway and suggest that VacA can be included among the growing number of bacterial pore-forming toxins that induce cell death through programmed necrosis. We propose that VacA augmentsH. pylori-induced mucosal inflammation in the human stomach by causing programmed necrosis of gastric epithelial cells and subsequent release of proinflammatory proteins and may thereby contribute to the pathogenesis of gastric cancer and peptic ulceration.


2003 ◽  
Vol 285 (1) ◽  
pp. G163-G176 ◽  
Author(s):  
Katie L. Marlink ◽  
Kathy D. Bacon ◽  
Brett C. Sheppard ◽  
Hassan Ashktorab ◽  
Duane T. Smoot ◽  
...  

In stomach, Helicobacter pylori ( Hp) adheres to gastric mucous epithelial cells (GMEC) and initiates several different signal transduction events. Alteration of intracellular Ca2+concentration ([Ca2+]i) is an important signaling mechanism in numerous bacteria-host model systems. Changes in [Ca2+]iinduced by Hp in normal human GMEC have not yet been described; therefore, we examined effects of Hp on [Ca2+]iin normal human GMEC and a nontransformed GMEC line (HFE-145). Cultured cells were grown on glass slides, porous filters, or 96-well plates and loaded with fura 2 or fluo 4. Hp wild-type strain 60190 and vacA–, cagA–, and picB–/cagE–isogenic mutants were incubated with cells. Changes in [Ca2+]iwere recorded with a fluorimeter or fluorescence plate reader. Wild-type Hp produced dose-dependent biphasic transient [Ca2+]ipeak and plateau changes in both cell lines. Hp vacA–isogenic mutant produced changes in [Ca2+]isimilar to those produced by wild type. Compared with wild type, cagA–and picB–/cagE–isogenic mutants produced lower peak changes and did not generate a plateau change. Preloading cultures with intracellular Ca2+chelator BAPTA blocked all Hp-induced [Ca2+]ichanges. Thapsigargin pretreatment of cultures to release Ca2+from internal stores reduced peak change. Extracellular Ca2+removal reduced plateau response. Hp-induced peak response was sensitive to G proteins and PLC inhibitors. Hp-induced plateau change was sensitive to G protein inhibitors, src kinases, and PLA2. These findings are the first to show that H. pylori alters [Ca2+]iin normal GMEC through a Ca2+release/influx mechanism that depends on expression of cagA and picB/cagE genes.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Liping Tao ◽  
Hai Zou ◽  
Zhimin Huang

Infection ofHelicobacter pylori (H. pylori)changed the proliferation of gastric epithelial cells and decreased the expression of heat shock protein 70 (HSP70). However, the effects ofH. pylorion the proliferation of gastric epithelial cells and the roles of HSP70 during the progress need further investigation.Objective.To investigate the effects ofHelicobacter pylori (H. pylori)and heat shock protein 70 (HSP70) on the proliferation of human gastric epithelial cells.Methods. H. pyloriand a human gastric epithelial cell line (AGS) were cocultured. The proliferation of AGS cells was quantitated by an MTT assay, and the expression of HSP70 in AGS cells was detected by Western blotting. HSP70 expression in AGS cells was silenced by small interfering RNA (siRNA) to investigate the role of HSP70. ThesiRNA-treated AGS cells were cocultured withH. pyloriand cell proliferation was measured by an MTT assay.Results.The proliferation of AGS cells was accelerated by coculturing withH. pylorifor 4 and 8 h, but was suppressed at 24 and 48 h. HSP70 expression was decreased in AGS cells infected byH. pylorifor 48 h. The proliferation in HSP70-silenced AGS cells was inhibited after coculturing withH. pylorifor 24 and 48 h compared with the control group.Conclusions.Coculture ofH. pylorialtered the proliferation of gastric epithelial cells and decreased HSP70 expression. HSP70 knockdown supplemented the inhibitory effect ofH. pylorion proliferation of epithelial cells. These results indicate that the effects ofH. pylorion the proliferation of gastric epithelial cells at least partially depend on the decreased expression of HSP70 induced by the bacterium.


2012 ◽  
Vol 80 (7) ◽  
pp. 2286-2296 ◽  
Author(s):  
William E. Sause ◽  
Andrea R. Castillo ◽  
Karen M. Ottemann

ABSTRACTThe human pathogenHelicobacter pyloriemploys a diverse collection of outer membrane proteins to colonize, persist, and drive disease within the acidic gastric environment. In this study, we sought to elucidate the function of the host-induced geneHP0289, which encodes an uncharacterized outer membrane protein. We first generated an isogenicH. pylorimutant that lacksHP0289and found that the mutant has a colonization defect in single-strain infections and is greatly outcompeted in mouse coinfection experiments with wild-typeH. pylori. Furthermore, we used protease assays and biochemical fractionation coupled with an HP0289-targeted peptide antibody to verify that the HP0289 protein resides in the outer membrane. Our previous findings showed that theHP0289promoter is upregulated in the mouse stomach, and here we demonstrate thatHP0289expression is induced under acidic conditions in an ArsRS-dependent manner. Finally, we have shown that theHP0289mutant induces greater expression of the chemokine interleukin-8 (IL-8) and the cytokine tumor necrosis factor alpha (TNF-α) in gastric carcinoma cells (AGS). Similarly, transcription of the IL-8 homolog keratinocyte-derived chemokine (KC) is elevated in murine infections with the HP0289 mutant than in murine infections with wild-typeH. pylori. On the basis of this phenotype, we renamed HP0289 ImaA forimmunomodulatoryautotransporter protein. Our work has revealed that genes inducedin vivoplay an important role inH. pyloripathogenesis. Specifically, the outer membrane protein ImaA modulates a component of the host inflammatory response, and thus may allowH. pylorito fine tune the host immune response based on ImaA expression.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Alevtina Gall ◽  
Ryan G. Gaudet ◽  
Scott D. Gray-Owen ◽  
Nina R. Salama

ABSTRACT Helicobacter pylori is a bacterial pathogen that colonizes the human stomach, causing inflammation which, in some cases, leads to gastric ulcers and cancer. The clinical outcome of infection depends on a complex interplay of bacterial, host genetic, and environmental factors. Although H. pylori is recognized by both the innate and adaptive immune systems, this rarely results in bacterial clearance. Gastric epithelial cells are the first line of defense against H. pylori and alert the immune system to bacterial presence. Cytosolic delivery of proinflammatory bacterial factors through the cag type 4 secretion system ( cag -T4SS) has long been appreciated as the major mechanism by which gastric epithelial cells detect H. pylori . Classically attributed to the peptidoglycan sensor NOD1, recent work has highlighted the role of NOD1-independent pathways in detecting H. pylori ; however, the bacterial and host factors involved have remained unknown. Here, we show that bacterially derived heptose-1,7-bisphosphate (HBP), a metabolic precursor in lipopolysaccharide (LPS) biosynthesis, is delivered to the host cytosol through the cag -T4SS, where it activates the host tumor necrosis factor receptor-associated factor (TRAF)-interacting protein with forkhead-associated domain (TIFA)-dependent cytosolic surveillance pathway. This response, which is independent of NOD1, drives robust NF-κB-dependent inflammation within hours of infection and precedes NOD1 activation. We also found that the CagA toxin contributes to the NF-κB-driven response subsequent to TIFA and NOD1 activation. Taken together, our results indicate that the sequential activation of TIFA, NOD1, and CagA delivery drives the initial inflammatory response in gastric epithelial cells, orchestrating the subsequent recruitment of immune cells and leading to chronic gastritis. IMPORTANCE H. pylori is a globally prevalent cause of gastric and duodenal ulcers and cancer. H. pylori antibiotic resistance is rapidly increasing, and a vaccine remains elusive. The earliest immune response to H. pylori is initiated by gastric epithelial cells and sets the stage for the subsequent immunopathogenesis. This study revealed that host TIFA and H. pylori -derived HBP are critical effectors of innate immune signaling that account for much of the inflammatory response to H. pylori in gastric epithelial cells. HBP is delivered to the host cell via the cag -T4SS at a time point that precedes activation of the previously described NOD1 and CagA inflammatory pathways. Manipulation of the TIFA-driven immune response in the host and/or targeting of ADP-heptose biosynthesis enzymes in H. pylori may therefore provide novel strategies that may be therapeutically harnessed to achieve bacterial clearance.


Sign in / Sign up

Export Citation Format

Share Document