scholarly journals Apoptosis in Acute Shigellosis Is Associated with Increased Production of Fas/Fas Ligand, Perforin, Caspase-1, and Caspase-3 but Reduced Production of Bcl-2 and Interleukin-2

2002 ◽  
Vol 70 (6) ◽  
pp. 3199-3207 ◽  
Author(s):  
Rubhana Raqib ◽  
Caroline Ekberg ◽  
Protim Sharkar ◽  
Pradip K. Bardhan ◽  
Arturo Zychlinsky ◽  
...  

ABSTRACT Shigella dysenteriae type 1-induced apoptotic cell death in rectal tissues from patients infected with Shigella dysenteriae type 1 was studied by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) technique and annexin V staining. Expression of proteins and cytokines participating in the apoptotic process (caspase-1, caspase-3, Fas [CD95], Fas ligand [Fas-L], perforin, granzyme A, Bax, WAF-1, Bcl-2, interleukin-2 [IL-2], IL-18, and granulocyte-macrophage colony-stimulating factor) in tissue in the acute and convalescent stages of dysentery was quantified at the single-cell level by in situ immunostaining. Apoptotic cell death in the lamina propria was markedly up-regulated at the acute stage (P < 0.05), where an increased number of necrotic cells were also seen. Phenotypic analysis of apoptotic cells revealed that 43% of T cells (CD3), 10% of granulocytes (CD15), and 5% of macrophages (CD56) underwent apoptosis. Increased activity of caspase-1 persisted in the rectum up to 1 month after onset. More-extensive expression of Fas, Fas-L, perforin, caspase-3, and IL-18, but not IL-2, at the acute stage than at the convalescent stage was observed. Increased expression of caspase-3 and IL-18 in tissues with severe inflammation compared to expression in those with mild inflammation was evident, implying a possible role in the perpetuation of inflammation. Significantly reduced cell death during convalescence was associated with a significant up-regulation of Bcl-2, Bax, and WAF-1 expression in the rectum compared to that in the acute phase of infection. Thus, induction of apoptosis at the local site in the early phase of S. dysenteriae type 1 infection was associated with a significant up-regulation of Fas/Fas-L and perforin and granzyme A expression and a down-regulation of Bcl-2 and IL-2, which promote cell survival.

2009 ◽  
Vol 37 (2) ◽  
pp. 209-218 ◽  
Author(s):  
Mathieu Vinken ◽  
Elke Decrock ◽  
Elke De Vuyst ◽  
Luc Leybaert ◽  
Tamara Vanhaecke ◽  
...  

This study was set up to critically evaluate a commonly-used in vitro model of hepatocellular apoptotic cell death, in which freshly isolated hepatocytes, cultured in a monolayer configuration, are exposed to a combination of Fas ligand and cycloheximide for six hours. A set of well-acknowledged cell death markers was addressed: a) cell morphology was studied by light microscopy; b) apoptotic and necrotic cell populations were quantified by in situ staining with Annexin-V, Hoechst 33342 and propidium iodide (PI); c) apoptotic and necrotic activities were monitored by probing caspase 3-like activity and measuring the extracellular leakage of lactate dehydrogenase (LDH), respectively; and d) the expression of apoptosis regulators was investigated by immunoblotting. The initiation of apoptosis was evidenced by the activation of caspase 8 and caspase 9, and increased Annexin-V reactivity. Progression through the apoptotic process was confirmed by the activation of caspase 3 and Bid, the enhanced expression of Bax, and the occurrence of nuclear fragmentation. Late transition to a necrotic appearance was demonstrated by an increased number of PI-positive cells and augmented extracellular release of LDH. Thus, the in vitro model allows the study of the entire course of Fas-mediated hepatocellular apoptotic cell death, which is not possible in vivo. This experimental system can serve a broad range of in vitro pharmaco-toxicological purposes, thereby directly assisting in the reduction of animal experimentation.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Ulugbek Negmadjanov ◽  
Zarko Godic ◽  
Mahek Mirza ◽  
Larisa Emelyanova ◽  
Farhan Rizvi ◽  
...  

Introduction: Cardiac injury results in the death of cardiac myocytes and subsequent scar formation through extracellular matrix (ECM) deposition by fibroblasts (FB) and myofibroblasts (myoFB). Excessive fibrosis results in pathological scarring that predisposes to arrhythmogenesis and heart failure, particularly in the elderly. Strategies to limit adverse ECM remodeling are urgently needed to curtail the growing epidemic of atrial fibrillation and heart failure in the aging population. Persistence of myoFB and resistance to apoptotic cell death has been proposed to underlie the mechanism of excessive fibrosis, yet is not fully characterized. Methods: Cultured NIH/3T3 cells (control and TGF-β1 treated) have been challenged with activators of extrinsic (FAS-Ligand, 1 μg/mL) or intrinsic (Thapsigargin 10 μM and Staurosporine 5 μM) apoptotic pathways and Caspase-3 activity was measured in cellular lysate. Results: FAS-L exposure induced ~40-fold suppression of Caspase-3 activity in TGF-β1 treated cells as compared with control (17±12 vs 686±5 nmol AMC/min/106 cells, respectively). Similarly, Staurosporine activated Caspase-3 in TGF-β1 treated cells ~3-fold (171±38 vs 536±29 nmol AMC/min/106 cells), and Thapsigargin ~10-fold (73±33 vs 742±8 nmol AMC/min/106 cells). Conclusion: TGF-β1 treatment increased the sensitivity of NIH/3T3 cells toward extrinsic and intrinsic apoptotic stimuli. Although, TGF-β1 treatment increased overall resistance of NIH/3T3 cells to apoptosis, the responsiveness of cells to extrinsic vs intrinsic pathways was differentially affected. This data support the hypothesis that persistence of myoFB results in pathological scarring.


2021 ◽  
Vol 22 (4) ◽  
pp. 2006
Author(s):  
Mi Jin Kim ◽  
Jinhong Park ◽  
Jinho Kim ◽  
Ji-Young Kim ◽  
Mi-Jin An ◽  
...  

Mercury is one of the detrimental toxicants that can be found in the environment and exists naturally in different forms; inorganic and organic. Human exposure to inorganic mercury, such as mercury chloride, occurs through air pollution, absorption of food or water, and personal care products. This study aimed to investigate the effect of HgCl2 on cell viability, cell cycle, apoptotic pathway, and alters of the transcriptome profiles in human non-small cell lung cancer cells, H1299. Our data show that HgCl2 treatment causes inhibition of cell growth via cell cycle arrest at G0/G1- and S-phase. In addition, HgCl2 induces apoptotic cell death through the caspase-3-independent pathway. Comprehensive transcriptome analysis using RNA-seq indicated that cellular nitrogen compound metabolic process, cellular metabolism, and translation for biological processes-related gene sets were significantly up- and downregulated by HgCl2 treatment. Interestingly, comparative gene expression patterns by RNA-seq indicated that mitochondrial ribosomal proteins were markedly altered by low-dose of HgCl2 treatment. Altogether, these data show that HgCl2 induces apoptotic cell death through the dysfunction of mitochondria.


2001 ◽  
Vol 79 (11) ◽  
pp. 953-958 ◽  
Author(s):  
Ellyawati Candra ◽  
Kimihiro Matsunaga ◽  
Hironori Fujiwara ◽  
Yoshihiro Mimaki ◽  
Yutaka Sashida ◽  
...  

Two steroidal saponins, tigogenin hexasaccharide-1 (TGHS-1, (25R)-5α-spirostan-3β-yl 4-O-[2-O-[3-O- (α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-3-O-[4-O-(α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-glucopyranosyl]- β-D-galactopyranoside) and tigogenin hexasaccharide-2 (TGHS-2, (25R)-5α-spirostan-3β-yl 4-O-[2-O-[3-O- (β-D-glucopyranosyl)-β-D-glucopyranosyl]-3-O-[4-O-(α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-glucopyranosyl]- β-D-galactopyranoside), were isolated from the fresh bulbs of Camassia cusickii. In murine leukemic L1210 cells, both compounds showed cytotoxicity with an EC50 value of 0.06 µM. The morphological observation revealed that TGHS-1 and TGHS-2 induced shrinkage in cell soma and chromatin condensation, suggesting apoptotic cell death. The cell death was confirmed to be apoptosis by Annexin V binding to phosphatidylserine in the cell membrane and excluding propidium iodide. A typical apoptotic DNA ladder and the cleavage of caspase-3 were observed after treatment with TGHS-1 and TGHS-2. In the presence of both the compounds, cells with sub-G1 DNA content were detected by flow cytometric analysis, indicating that TGHS-1 and TGHS-2 (each EC50 value of 0.1 µM) are the most powerful apoptotic saponins known. These results suggest that TGHS-1 and TGHS-2 induce apoptotic cell death through caspase-3 activation.Key words: steroidal saponin, tigogenin hexasaccharide, apoptosis, DNA fragmentation, murine leukemic L1210 cells.


2009 ◽  
Vol 296 (3) ◽  
pp. R743-R762 ◽  
Author(s):  
R.-Marc Pelletier ◽  
Suk Ran Yoon ◽  
Casimir D. Akpovi ◽  
Emil Silvas ◽  
María Leiza Vitale

We identified aberrations leading to spontaneous autoimmune orchitis (AIO) in mink, a seasonal breeder and natural model for autoimmunity. This study provides evidence favoring the view that a malfunction of the clearance mechanisms for apoptotic cell debris arising from imbalances in phagocyte receptors or cytokines acting on Sertoli cells constitutes a major factor leading to breakdown of self-tolerance during spontaneous AIO. Serum anti-sperm antibody titers measured by ELISA reflected spermatogenic activity without causing immune inflammatory responses. Orchitic mink showed excess antibody production accompanied by spermatogenic arrest, testicular leukocyte infiltration, and infertility. AIO serum labeled the postacrosomal region, the mid and end piece of mink sperm, whereas normal mink serum did not. Normal serum labeled plasma membranes, whereas AIO serum reacted with germ cell nuclei. Western blot analyses revealed that AIO serum reacted specifically to a 23- and 50-kDa protein. The number of apostain-labeled apoptotic cells was significantly higher in orchitic compared with normal tubules. However, apoptosis levels measured by ELISA in seminiferous tubular fractions (STf) were not significantly different in normal and orchitic tubules. The levels of CD36, TNF-α, TNF-α RI, IL-6, and Fas but not Fas-ligand (L), and ATP-binding cassette transporter ABCA1 were changed in AIO STf. TNF-α and IL-6 serum levels were increased during AIO. Fas localized to germ cells, Sertoli cells, and the lamina propria of the tubules and Fas-L, to germ cells. Fas colocalized with Fas-L in residual bodies in normal testis and in giant cells and infiltrating leukocytes in orchitic tubules.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Sweena Parmar ◽  
Xiaokun Geng ◽  
Changya Peng ◽  
Murali Guthikonda ◽  
Yuchuan Ding

Objectives: Normobaric oxygenation (NBO) has been shown to provide neuroprotection in vivo and in vitro . Yet, a recent Phase 2 clinical trial investigating NBO therapy in acute ischemic stroke was terminated due to questionable therapeutic benefit. NBO therapy alone may be insufficient to produce improved outcomes. In our recent study, we demonstrated a strong neuroprotective effect of ethanol at a dose of 1.5 g/kg (equivalent to the human legal driving limit). In this study, we sought to identify whether low-dose ethanol administration enhances the neuroprotection offered by NBO and whether combined administration of NBO with ethanol is associated with reduced apoptosis. Methods: Sprague-Dawley rats were subjected to right middle cerebral artery occlusion (MCAO) for 2 h, followed by reperfusion. Ischemic animals received either an intraperitoneal injection of 1.0 g/kg ethanol, 2 h of 100% NBO, or both ethanol and NBO. The Cell Death Detection ELISA Assay (Roche) was performed to determine apoptotic cell death at 24 h after reperfusion. Levels of pro-apoptotic (Caspase-3, Bcl-2-associated X-BAX, and Apoptosis-Inducing Factor-AIF) and anti-apoptotic proteins (Bcl-2 and Bcl-xL) were determined by Western blot analysis at 3 and 24 h after reperfusion. Results: As expected, untreated ischemic rats had the highest apoptotic cell death. Combined NBO/ethanol therapy decreased cell death by 48%, as compared to 29% with ethanol and 22% with NBO. Similarly, combined NBO/ethanol therapy promoted the greatest expression of anti-apoptotic factors and the lowest expression of pro-apoptotic proteins at 3 h after reperfusion. This effect was maintained at 24 h and even more pronounced for AIF and Caspase-3. Conclusions: Given singularly, NBO and ethanol improved the degree of cell death, decreased the expression of pro-apoptotic proteins, and increased the expression of anti-apoptotic proteins. Yet, when administered together, their effects largely compounded. These results suggest a synergistic neuroprotection offered by NBO with ethanol, which may be attributed at least in part to their shared role in modulating neuronal apoptosis.


2001 ◽  
Vol 280 (2) ◽  
pp. L316-L325 ◽  
Author(s):  
Kazuyoshi Kuwano ◽  
Ritsuko Kunitake ◽  
Takashige Maeyama ◽  
Naoki Hagimoto ◽  
Masayuki Kawasaki ◽  
...  

Caspases have been implicated in the effector process of apoptosis in several systems including the Fas-Fas ligand pathway. We previously demonstrated that excessive apoptosis of lung epithelial cells and the Fas-Fas ligand pathway were essential in the pathogenesis of bleomycin-induced pneumopathy in mice. Therefore, the purpose of this study was to investigate whether a caspase inhibitor could prevent the development of this model. The expression of caspase-1 and caspase-3 was upregulated on lung epithelial cells, alveolar macrophages, and infiltrating inflammatory cells in this model. We demonstrated that a broad-spectrum caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, decreased the caspase-1- and caspase-3-like activity, the number of apoptotic cells, the pathological grade of lung inflammation and fibrosis, and the hydroxyproline content in lung tissues in this model. We conclude that caspase inhibitors could be a new therapeutic approach against lung injury and pulmonary fibrosis.


2004 ◽  
Vol 32 (03) ◽  
pp. 377-387 ◽  
Author(s):  
Hyung-Jin Kim ◽  
Seon Il Jang ◽  
Young-Jun Kim ◽  
Hyun-Ock Pae ◽  
Hae-Young Won ◽  
...  

We studied the effect of 4-acetyl-12,13-epoxyl-9-trichothecene-3,15-diol (AETD) isolated from Isaria japonica, one of the most popular Chinese fungal medicines, on the induction of apoptosis in rat bladder carcinoma NBT-II cells. AETD was cytotoxic to NBT-II cells, and this cytotoxic effect appears to be attributed to its induction of apoptotic cell death, as AETD induced nuclear morphological changes and internucleosomal DNA fragmentation, and increased the proportion of hypodiploid cells and activity of caspase-3. AETD treatment also decreased the expression of the anti-apoptotic protein Bcl-2 and increased the expression of the pro-apoptotic protein Bax. These results provide important information in understanding the mechanism(s) of AETD-induced apoptosis.


2004 ◽  
Vol 17 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Anna Csiszar ◽  
Zoltan Ungvari ◽  
Akos Koller ◽  
John G. Edwards ◽  
Gabor Kaley

Previously we demonstrated that aging in coronary arteries is associated with proinflammatory phenotypic changes and decreased NO bioavailability, which, we hypothesized, promotes vascular disease by enhancing endothelial apoptosis. To test this hypothesis we characterized proapoptotic alterations in the phenotype of coronary arteries of aged (26 mo old) and young (3 mo old) F344 rats. DNA fragmentation analysis and TUNEL assay showed that in aged vessels there was an approximately fivefold increase in the number of apoptotic endothelial cells. In aged coronary arteries there was an increased expression of TNFα, TNFβ, and caspase 9 (microarray, real-time PCR), as well as increased caspase 9 and caspase 3 activity, whereas expression of TNFR1, TNFα-converting enzyme (TACE), Bcl-2, Bcl-X(L), Bid, Bax, caspase 8, and caspase 3 were unchanged. In vessel culture (18 h) incubation of aged coronary arteries with a TNF blocking antibody or the NO donor S-nitroso-penicillamine (SNAP) decreased apoptotic cell death. Incubation of young arteries with exogenous TNFα increased caspase 9 activity and elicited endothelial apoptosis, which was attenuated by SNAP. Inhibition of NO synthesis in cultured young coronary arteries also induced apoptotic cell death and potentiated the apoptotic effect of TNFα. Thus we propose that age-related upregulation of TNFα and caspase 9 and decreased bioavailability of NO promote endothelial apoptosis in coronary arteries that may lead to impaired endothelial function and ischemic heart disease in the elderly.


Sign in / Sign up

Export Citation Format

Share Document