scholarly journals Enhanced CXC Chemokine Responses of Human Colonic Epithelial Cells to Locus of Enterocyte Effacement-Negative Shiga-Toxigenic Escherichia coli

2003 ◽  
Vol 71 (10) ◽  
pp. 5623-5632 ◽  
Author(s):  
Trisha J. Rogers ◽  
Adrienne W. Paton ◽  
Shaun R. McColl ◽  
James C. Paton

ABSTRACT There is increasing evidence that by facilitating translocation of Shiga toxin (Stx) across the intestinal epithelium and by transporting bound toxin to remote sites such as the renal endothelium, polymorphonuclear leukocytes (PMNs) play a key role in the pathogenesis of Shiga-toxigenic Escherichia coli (STEC) disease. Plasma levels of PMN-attracting CXC chemokines such as interleukin-8 (IL-8) also appear to correlate in humans with the severity of disease. Thus, the capacity of STEC strains to elicit CXC chemokine responses in intestinal epithelial cells may be a crucial step in pathogenesis. Accordingly, we attempted to determine which STEC factors are responsible for CXC chemokine induction in human colonic epithelial cells. Infection of Hct-8 cells with locus for enterocyte effacement (LEE)-negative STEC strains isolated from patients with severe STEC disease resulted in up-regulation of IL-8, macrophage inflammatory protein 2α (MIP-2α), MIP-2β, and ENA-78 mRNA significantly higher and earlier than that elicited by several LEE-positive STEC strains, including the O157:H7 strain EDL933. Similarly, levels of IL-8 protein in LEE-negative STEC-infected Hct-8 culture supernatants were significantly higher than in LEE-positive STEC-infected culture supernatants. The difference in responses could not be attributed to the expression or nonexpression of LEE genes, the presence or absence of an STEC megaplasmid, or differences in O serogroups or in the type or amount of Stx produced. Interestingly, however, several of the LEE-negative STEC strains eliciting the strongest chemokine responses belonged to flagellar serotype H21. Incubation of Hct-8 cells with isolated H21 flagellin elicited IL-8 and MIP-2α responses similar to those seen in the presence of the most potent LEE-negative STEC strains. Deletion of the fliC gene, but not the stx 2 gene, largely abolished the capacity of O113:H21 LEE-negative STEC strain 98NK2 to elicit IL-8 and MIP-2α responses in Hct-8 cells. Taken together, these data suggest that although Stx is capable of inducing CXC chemokine responses, the elevated responses seen in cells infected with certain STEC strains are largely attributable to the production of flagellin.

2006 ◽  
Vol 74 (10) ◽  
pp. 5747-5755 ◽  
Author(s):  
Yan Lu ◽  
Sunao Iyoda ◽  
Hiromi Satou ◽  
Hitomi Satou ◽  
Kenichiro Itoh ◽  
...  

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) are important enteropathogens causing severe diseases such as hemorrhagic colitis and hemolytic-uremic syndrome in humans. The majority of STEC strains of serogroups O157, O26, or O111 associated with severe cases of these diseases possess a pathogenicity island termed the locus of enterocyte effacement (LEE). LEE, which is responsible for the formation of attaching-and-effacing lesions on intestinal epithelial cells, is important for the full virulence of STEC. Nonetheless, LEE-negative STEC strains have repeatedly been reported to be associated with severe diseases in humans. In this study, we characterized adhesion to cultured epithelial cells of certain LEE-negative STEC isolated from humans with or without bloody diarrhea. Several LEE-negative STEC belonging to serogroup O91 showed an unusual, chain-like adhesion pattern to HEp-2 cells. Using Tn5-based transposon mutagenesis, we identified the gene essential for the chain-like adhesion phenotype of this O91 STEC strain. Sequence analysis of the Tn5-inserted allele identified a novel chromosomal open reading frame (ORF) encoding a polypeptide with a high degree of similarity to the E. coli immunoglobulin-binding (Eib) proteins EibA, -C, -D, -E, and -F. Therefore, the ORF was designated EibG. Laboratory E. coli strain MC4100 transformed with a multicopy plasmid carrying eibG showed chain-like adhesion to HEp-2 cells, and whole-cell lysates of the strain bound to human-derived immunoglobulin G (IgG) Fc and IgA. These results indicate that EibG acts as an IgG Fc- and IgA-binding protein, as well as an adhesin of LEE-negative STEC.


2011 ◽  
Vol 1 (1) ◽  
pp. 16 ◽  
Author(s):  
S. Brijesh ◽  
Pundarikakshudu Tetali ◽  
Tannaz J. Birdi

Diarrhea is a major health concern in developing countries with enteropathogenic <em>Escherichia coli</em> (EPEC) being a leading cause of infantile diarrhea. Much of the pathology of EPEC infection is due to the inflammatory responses of infected intestinal epithelium through secretion of pro-inflammatory cytoki - nes such as interleukin (IL)-8. With medicinal plants gaining popularity as prospective antidiarrheal agents, we aimed to evaluate the effect of anti-diarrheal medicinal plants on secretion of IL-8 by epithelial cells in response to EPEC infection. The effect of the decoctions of four anti-diarrheal medicinal plants viz. <em>Aegle marmelos</em>, <em>Cyperus rotundus</em>, <em>Psidium guajava</em> and <em>Zingiber officinale</em> was studied on secretion of IL-8 by a human colon adenocarcinoma cell line, HT-29 infected with <em>E. coli </em>E2348/69. Two protocols were used viz. pre-incubation and post-incubation. The data obtained demonstrated that out of the four plants used, only <em>P. guajava</em> decreased secretion of IL-8 in the post-incubation protocol although in the pre-incubation protocol an increase was observed. A similar increase was seen with <em>C. rotundus</em> in the preincubation protocol. No effect on IL-8 secretion was observed with <em>A. marmelos</em> and <em>Z. officinale</em> in both protocols and with <em>C. rotundus </em>in the post-incubation protocol. The post-incubation protocol, in terms of clinical relevance, indicates the effect of the plant decoctions when used as treatment. Hence <em>P. guajava</em> may be effective in controlling the acute inflammatory response of the intestinal epithelial cells in response to EPEC infection.<p> </p>


2019 ◽  
Vol 29 (1-6) ◽  
pp. 91-100
Author(s):  
Dorna Khoobbakht ◽  
Shohreh Zare Karizi ◽  
Mohammad Javad  Motamedi ◽  
Rouhollah Kazemi ◽  
Pooneh Roghanian ◽  
...  

Enterotoxigenic <i>Escherichia coli</i> (ETEC) is the most common agent of diarrhea morbidity in developing countries. ETEC adheres to host intestinal epithelial cells via various colonization factors. The CooD and CotD proteins play a significant role in bacteria binding to the intestinal epithelial cells as adhesin tip subunits of CS1 and CS2 pili. The purpose here was to design a new construction containing <i>cooD</i> and <i>cotD</i> genes and use several types of bioinformatics software to predict the structural and immunological properties of the designed antigen. The fusion gene was synthesized with codon bias of <i>E. coli</i> in order to increase the expression level of the protein. The amino acid sequences, protein structure, and immunogenicity properties of potential antigens were analyzed in silico. The chimeric protein was expressed in <i>E. coli</i>BL21 (DE3). The antigenicity of the recombinant proteins was verified by Western blotting and ELISA. In order to assess the induced immunity, the immunized mice were challenged with wild-type ETEC by an intraperitoneal route. Immunological analyses showed the production of a high titer of IgG serum with no sign of serum-mucosal IgA antibody response. The result of the challenge assay showed that 30% of immunized mice survived. The results of this study showed that CooD-CotD recombinant protein can stimulate immunity against ETEC. The designed chimera could be a prototype for the subunit vaccine, which is worthy of further consideration.


2020 ◽  
Vol 26 (6) ◽  
pp. 885-897 ◽  
Author(s):  
John Gubatan ◽  
Gillian A Mehigan ◽  
Fernando Villegas ◽  
Shuji Mitsuhashi ◽  
Maria Serena Longhi ◽  
...  

Abstract Background Vitamin D plays a protective role in ulcerative colitis (UC) patients through unclear mechanisms. Cathelicidin is an antimicrobial peptide induced by 1,25(OH)D2. Our goal was to evaluate the link between cathelicidin and vitamin D–associated clinical outcomes in UC patients, explore vitamin D induction of cathelicidin in human colon cells, and evaluate the effects of intrarectal human cathelicidin on a murine model of colitis. Methods Serum and colonic cathelicidin levels were measured in UC patients and correlated with clinical and histologic outcomes. Human colon cells were treated with 1,25(OH)2D and production of cathelicidin and cytokines were quantified. Antimicrobial activity against Escherichia coli from cell culture supernatants was measured. Mice were treated with intrarectal cathelicidin, and its effects on DSS colitis and intestinal microbiota were evaluated. Results In UC patients, serum 25(OH)D positively correlated with serum and colonic cathelicidin. Higher serum cathelicidin is associated with decreased risk of histologic inflammation and clinical relapse but not independent of 25(OH)D or baseline inflammation. The 1,25(OH)2D treatment of colon cells induced cathelicidin and IL-10, repressed TNF-α, and suppressed Escherichia coli growth. This antimicrobial effect was attenuated with siRNA-cathelicidin transfection. Intrarectal cathelicidin reduced the severity of DSS colitis but did not mitigate the impact of colitis on microbial composition. Conclusions Cathelicidin plays a protective role in 25(OH)D-associated UC histologic outcomes and murine colitis. Cathelicidin is induced by vitamin D in human colonic epithelial cells and promotes antimicrobial activity against E. coli. Our study provides insights into the vitamin D–cathelicidin pathway as a potential therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document