scholarly journals Cross-Reactivity of Antibodies against PorA after Vaccination with a Meningococcal B Outer Membrane Vesicle Vaccine

2003 ◽  
Vol 71 (4) ◽  
pp. 1650-1655 ◽  
Author(s):  
C. L. Vermont ◽  
H. H. van Dijken ◽  
A. J. Kuipers ◽  
C. J. P. van Limpt ◽  
W. C. M. Keijzers ◽  
...  

ABSTRACT The cross-reactivity of PorA-specific antibodies induced by a monovalent P1.7-2,4 (MonoMen) and/or a hexavalent (HexaMen) meningococcal B outer membrane vesicle vaccine (OMV) in toddlers and school children was studied by serum bactericidal assays (SBA). First, isogenic vaccine strains and PorA-identical patient isolates were compared as a target in SBA, to ensure that the vaccine strains are representative for patient isolates. Geometric mean titers (GMTs) in SBA against patient isolates with subtypes P1.5-2,10 and P1.5-1,2-2 after vaccination with HexaMen were generally lower than those against vaccine strains with the same subtype, although the percentage of vaccine responders (≥4-fold increase in SBA after vaccination) was not affected. Using various P1.7-2,4 patient isolates, GMTs as well as the number of vaccine responders were higher than for the P1.7-2,4 vaccine strain, indicating that the use of the P1.7-2,4 vaccine strain may have underestimated the immunogenicity of this subtype in HexaMen. Secondly, the cross-reactivity of antibodies induced by MonoMen and HexaMen was studied using several patient isolates that differed from the vaccine subtypes by having minor antigenic variants of one variable region (VR), by having a completely different VR or by having a different combination of VRs. MonoMen induced P1.4-specific antibodies that were cross-reactive with P1.4 variants P1.4-1 and P1.4-3. HexaMen induced a broader cross-reactive antibody response against various patient isolates with one VR identical to a vaccine subtype or a combination of VRs included in HexaMen. Cross-reactivity, measured by a fourfold increase in SBA after vaccination, against these strains ranged from 23 to 92% depending on the subtype of the tested strain and was directed against both VR1 and VR2. The extended cross-reactivity of vaccinee sera induced by HexaMen against antigenic variants has important favorable implications for meningococcal B OMV vaccine coverage.

PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0181508 ◽  
Author(s):  
Arianna Marini ◽  
Omar Rossi ◽  
Maria Grazia Aruta ◽  
Francesca Micoli ◽  
Simona Rondini ◽  
...  

2006 ◽  
Vol 14 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Dominique Boutriau ◽  
Jan Poolman ◽  
Ray Borrow ◽  
Jamie Findlow ◽  
Javier Diez Domingo ◽  
...  

ABSTRACT An experimental bivalent meningococcal outer membrane vesicle (OMV) vaccine (B:4:P1.19,15 and B:4:P1.7-2,4) has been developed to provide wide vaccine coverage particularly of the circulating strains in Europe. A randomized, controlled phase II study (study identification number, 710158/002; ClinicalTrials.gov identifier number, NCT00137917) to evaluate the immunogenicity and safety of three doses of the OMV vaccine when given to healthy 12- to 18-year-olds on a 0-2-4 month (n = 162) or 0-1-6 month schedule (n = 159). A control group received two doses of hepatitis A and one of conjugated meningococcal serogroup C vaccine on a 0-1-6 month schedule (n = 157). Immune response, defined as a fourfold increase in serum bactericidal titer using a range of vaccine-homologous or PorA-related and heterologous strains, was determined for samples taken before and 1 month after vaccination; assays were performed at two laboratories. As measured at the GlaxoSmithKline (GSK) laboratory, the OMV vaccine induced an immune response against homologous or PorA-related strains (in at least 51% of subjects against strains of serosubtype P1.19,15 and at least 66% against strains of serosubtype P1.7-2,4) and against a set of three heterologous strains (in 28% to 46% of subjects). Both laboratories showed consistent results for immune response rates. The OMV vaccine had a similar reactogenicity profile for each schedule. Pain preventing normal activities occurred in approximately one-fifth of the subjects; this was significantly higher than in the control group. The immune responses induced by the bivalent OMV vaccine demonstrated the induction of bactericidal antibodies against the vaccine-homologous/PorA-related strains but also against heterologous strains, indicating the presence of protective antigens in OMVs and confirming the potential of clinical cross-protection.


2006 ◽  
Vol 13 (7) ◽  
pp. 790-796 ◽  
Author(s):  
Berit Feiring ◽  
Jan Fuglesang ◽  
Philipp Oster ◽  
Lisbeth M. Næss ◽  
Oddveig S. Helland ◽  
...  

ABSTRACT MenBvac is an outer membrane vesicle vaccine against systemic meningococcal disease caused by serogroup B Neisseria meningitidis. In this placebo-controlled double-blind study including 374 healthy adolescents, the safety and immunogenicity of a schedule of three primary doses 6 weeks apart followed by a fourth dose a year later were evaluated. Antibody responses to the vaccine strain and heterologous strains (non-vaccine-type strains) and the persistence of these antibodies were measured by the serum bactericidal assay (SBA) and enzyme-linked immunosorbent assay up to 1 year after the last dose. The proportion of subjects with SBA titers of ≥4 against the vaccine strain increased from 3% prevaccination to 65% after the third dose. Ten months later, this proportion had declined to 28%. The fourth dose induced a booster response demonstrated by 93% of subjects achieving a titer of ≥4. One year after the booster dose, 64% still showed SBA titers of ≥4. Cross-reacting antibodies were induced against all heterologous strains tested, although the magnitude of SBA titers differed widely between the different strains. All four doses of MenBvac were safe. Both MenBvac and the placebo had reactogenicity profiles of mild to moderate local and systemic reactions. Pain, the most common reaction, was reported with similar frequencies in both groups. No serious adverse events occurred in the MenBvac group. This study confirmed the good immunogenicity of the primary course of MenBvac and demonstrated prolonged persistence and increased cross-reactivity of functional antibodies elicited by a booster dose.


Author(s):  
Kathryn A Matthias ◽  
Kristie L Connolly ◽  
Afrin A Begum ◽  
Ann E Jerse ◽  
Andrew N Macintyre ◽  
...  

Abstract Background Despite decades of research efforts, development of a gonorrhea vaccine has remained elusive. Epidemiological studies suggest that detoxified outer membrane vesicle (dOMV) vaccines from Neisseria meningitidis (Nm) may protect against infection with Neisseria gonorrhoeae (Ng). We recently reported that Nm dOMVs lacking the major outer membrane proteins (OMPs) PorA, PorB, and RmpM induced greater antibody cross-reactivity against heterologous Nm strains than wild-type (WT) dOMVs and may represent an improved vaccine against gonorrhea. Methods We prepared dOMV vaccines from meningococcal strains that were sufficient or deleted for PorA, PorB, and RmpM. Vaccines were tested in a murine genital tract infection model and antisera were used to identify vaccine targets. Results Immunization with Nm dOMVs significantly and reproducibly enhanced gonococcal clearance for mice immunized with OMP-deficient dOMVs; significant clearance for WT dOMV-immunized mice was observed in one of two experiments. Clearance was associated with serum and vaginal anti-Nm dOMV IgG antibodies that cross-reacted with Ng. Serum IgG was used to identify putative Ng vaccine targets, including PilQ, MtrE, NlpD, and GuaB. Conclusions Meningococcal dOMVs elicited a protective effect against experimental gonococcal infection. Recognition and identification of Ng vaccine targets by Nm dOMV-induced antibodies supports the development of a cross-protective Neisseria vaccine.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Peter T. Beernink ◽  
Vianca Vianzon ◽  
Lisa A. Lewis ◽  
Gregory R. Moe ◽  
Dan M. Granoff

ABSTRACT MenB-4C (Bexsero; GlaxoSmithKline Biologicals) is a licensed meningococcal vaccine for capsular B strains. The vaccine contains detergent-extracted outer membrane vesicles (dOMV) and three recombinant proteins, of which one is factor H binding protein (FHbp). In previous studies, overexpression of FHbp in native OMV (NOMV) with genetically attenuated endotoxin (LpxL1) and/or by the use of mutant FHbp antigens with low factor H (FH) binding increased serum bactericidal antibody (SBA) responses. In this study, we immunized 13 infant macaques with 2 doses of NOMV with overexpressed mutant (R41S) FHbp with low binding to macaque FH (NOMV-FHbp). Control macaques received MenB-4C (n = 13) or aluminum hydroxide adjuvant alone (n = 4). NOMV-FHbp elicited a 2-fold higher IgG anti-FHbp geometric mean titer (GMT) than MenB-4C (P = 0.003), and the anti-FHbp repertoire inhibited binding of FH to FHbp, whereas anti-FHbp antibodies to MenB-4C enhanced FH binding. MenB-4C elicited a 10-fold higher GMT against strain NZ98/254, which was used to prepare the dOMV component, whereas NOMV-FHbp elicited an 8-fold higher GMT against strain H44/76, which was the parent of the mutant NOMV-FHbp vaccine strain. Against four strains with PorA mismatched to both of the vaccines and different FHbp sequence variants, NOMV-FHbp elicited 6- to 14-fold higher SBA GMTs than MenB-4C (P ≤ 0.0002). Two of 13 macaques immunized with MenB-4C but 0 of 17 macaques immunized with NOMV-FHbp or adjuvant developed serum anti-FH autoantibodies (P = 0.18). Thus, the mutant NOMV-FHbp approach has the potential to elicit higher and broader SBA responses than a licensed group B vaccine that contains wild-type FHbp that binds FH. The mutant NOMV-FHbp also might pose less of a risk of eliciting anti-FH autoantibodies. IMPORTANCE There are two licensed meningococcal capsular B vaccines. Both contain recombinant factor H binding protein (FHbp), which can bind to host complement factor H (FH). The limitations of these vaccines include a lack of protection against some meningococcal strains and the potential to elicit autoantibodies to FH. We immunized infant macaques with a native outer membrane vesicle (NOMV) vaccine with genetically attenuated endotoxin and overproduced mutant FHbp with low binding to FH. The NOMV-FHbp vaccine stimulated higher levels of protective serum antibodies than a licensed meningococcal group B vaccine against five of six genetically diverse meningococcal strains tested. Two of 13 macaques immunized with the licensed vaccine, which contains FHbp that binds macaque FH, but 0 of 17 macaques given NOMV-FHbp or the negative control developed serum anti-FH autoantibodies Thus, in a relevant nonhuman primate model, the NOMV-FHbp vaccine elicited greater protective antibodies than the licensed vaccine and may pose less of a risk of anti-FH autoantibody.


BIO-PROTOCOL ◽  
2013 ◽  
Vol 3 (23) ◽  
Author(s):  
Oh Kim ◽  
Bok Hong ◽  
Kyong-Su Park ◽  
Yae Yoon ◽  
Seng Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document