scholarly journals Cytolethal Distending Toxin Gene Cluster in Enterohemorrhagic Escherichiacoli O157:H− and O157:H7: Characterization and Evolutionary Considerations

2003 ◽  
Vol 71 (6) ◽  
pp. 3634-3638 ◽  
Author(s):  
Andreas Janka ◽  
Martina Bielaszewska ◽  
Ulrich Dobrindt ◽  
Lilo Greune ◽  
M. Alexander Schmidt ◽  
...  

ABSTRACT We identified a cytolethal distending toxin (cdt) gene cluster in 87, 6, and 0% of sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H−, EHEC O157:H7, and E. coli O55:H7/H− strains, respectively. The toxin was expressed by the wild-type EHEC O157 strains and by a cdt-containing cosmid from a library of SF EHEC O157:H− strain 493/89. The cdt flanks in strain 493/89 were homologous to bacteriophages P2 and lambda. Our data demonstrate that cdt, encoding a potential virulence factor, is present in the EHEC O157 complex and suggest that cdt may have been acquired by phage transduction.

2018 ◽  
Vol 84 (6) ◽  
Author(s):  
Keya Sen ◽  
Jingrang Lu ◽  
Piyali Mukherjee ◽  
Tanner Berglund ◽  
Eunice Varughese ◽  
...  

ABSTRACTCampylobacterspp. are major causes of gastroenteritis worldwide. The virulence potential ofCampylobactershed in crow feces obtained from a roost area in Bothell, Washington, was studied and compared with that from isolates from other parts of Washington and from a different crow species 7,000 miles away in Kolkata, India.Campylobacterorganisms were isolated from 61% and 69% of the fecal samples obtained from Washington and Kolkata, respectively, and were confirmed to beC. jejuni. The cytolethal distending toxin (CDT) gene cluster from these isolates revealed a truncated sequence of approximately 1,350 bp. Sequencing of the gene cluster revealed two types of mutations: a 668-bp deletion acrosscdtAandcdtBand a 51-bp deletion withincdtB. Some strains had additional 20-bp deletions incdtB. In either case, a functional toxin is not expected; a functional toxin is produced by the expression of three tandem genes,cdtA,cdtB, andcdtC. Reverse transcriptase PCR with total RNA extracted from the isolates showed no expression ofcdtB. A toxin assay performed with these isolates on HeLa cells failed to show cytotoxic effects on the cells. However, the isolates were able to colonize the chicken ceca for a period of at least 4 weeks, similar to that of a clinical isolate. Other virulence gene markers, flagellin A and CadF, were present in 100% of the isolates. Our study suggests that crows carry the bacteriumC. jejunibut with a dysfunctional toxin protein that is expected to drastically reduce its potential to cause diarrhea.IMPORTANCECampylobacters are a major cause of gastroenteritis in humans. Since outbreaks have most often been correlated with poultry or unpasteurized dairy products, contact with farm animals, or contaminated water, historically, the majority of the studies have been with campylobacter isolates from poultry, domestic animals, and human patients. However, the bacterium has a broad host range that includes birds. These reservoirs need to be investigated, because the identification of the source and a determination of the transmission routes for a pathogen are important for the development of evidence-based disease control programs. In this study, two species of the human-commensal crow, from two different geographical regions separated by 7,000 miles of land and water, have been examined for their ability to cause disease by shedding campylobacters. Our results show that the crow may not play a significant role in campylobacteriosis, because the campylobacter organisms they shed produce a nonfunctional toxin.


2003 ◽  
Vol 188 (12) ◽  
pp. 1892-1897 ◽  
Author(s):  
Nancy S. Taylor ◽  
Zhongming Ge ◽  
Zeli Shen ◽  
Floyd E. Dewhirst ◽  
James G. Fox

1999 ◽  
Vol 67 (8) ◽  
pp. 3900-3908 ◽  
Author(s):  
Marla K. Stevens ◽  
Jo L. Latimer ◽  
Sheryl R. Lumbley ◽  
Christine K. Ward ◽  
Leslie D. Cope ◽  
...  

ABSTRACT Haemophilus ducreyi expresses a soluble cytolethal distending toxin (CDT) that kills HeLa, HEp-2, and other human epithelial cells in vitro. H. ducreyi CDT activity is encoded by a three-gene cluster (cdtABC), and antibody to the cdtC gene product can neutralize CDT activity in vitro (L. D. Cope, S. R. Lumbley, J. L. Latimer, J. Klesney-Tait, M. K. Stevens, L. S. Johnson, M. Purven, R. S. Munson, Jr., T. Lagergard, J. D. Radolf, and E. J. Hansen, Proc. Natl. Acad. Sci. USA 94:4056–4061, 1997). Culture supernatant fluid from a recombinant Escherichia colistrain containing the H. ducreyi cdtABC gene cluster readily killed both HeLa cells and HaCaT keratinocytes and had a modest inhibitory effect on the growth of human foreskin fibroblasts. Insertional inactivation of the cdtC gene in this recombinant E. coli strain eliminated the ability of this strain to kill HeLa cells and HaCaT keratinocytes. This mutatedH. ducreyi cdtABC gene cluster was used to construct an isogenic H. ducreyi cdtC mutant. Monoclonal antibodies against the H. ducreyi CdtA, CdtB, and CdtC proteins were used to characterize protein expression by this cdtCmutant. Culture supernatant fluid from this H. ducreyi cdtCmutant did not detectably affect any of the human cells used in this study. The presence of the wild-type H. ducreyi cdtC gene in trans in this H. ducreyi mutant restored its ability to express a CDT that killed both HeLa cells and HaCaT keratinocytes. The isogenic H. ducreyi cdtC mutant was shown to be as virulent as its wild-type parent strain in the temperature-dependent rabbit model for experimental chancroid. Lack of expression of the H. ducreyi CdtC protein also did not affect the ability of this H. ducreyi mutant to survive in the skin of rabbits.


2009 ◽  
Vol 22 (7) ◽  
pp. 783-789 ◽  
Author(s):  
William Yajima ◽  
Yue Liang ◽  
Nat N. V. Kav

Although Sclerotinia sclerotiorum (Lib.) de Bary has been studied extensively, there are still aspects of this important phytopathogen's ability to cause disease in susceptible plants that remain unclear. A recent comprehensive proteome-level investigation of this fungus identified a number of proteins whose functions in disease initiation and progression have not been clearly established. Included among these proteins was an arabinofuranosidase/β-xylosidase precursor whose role as a potential virulence factor had not been investigated previously. This article describes the generation of gene-disrupted mutant S. sclerotiorum unable to produce this arabinofuranosidase/β-xylosidase precursor as well as the comparison of the virulence of this mutant with that of wild-type mycelia on susceptible canola leaves and stems. At all time points tested, the degree of necrosis was observed to be significantly greater on the plant tissue inoculated with wild-type mycelia. To our knowledge, this is the first report that clearly demonstrates that this arabinofuranosidase/β-xylosidase precursor is a virulence factor for S. sclerotiorum.


mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Ryan W. Bogard ◽  
Bryan W. Davies ◽  
John J. Mekalanos

ABSTRACTLysR-type transcriptional regulators (LTTRs) are the largest, most diverse family of prokaryotic transcription factors, with regulatory roles spanning metabolism, cell growth and division, and pathogenesis. Using a sequence-defined transposon mutant library, we screened a panel ofV. choleraeEl Tor mutants to identify LTTRs required for host intestinal colonization. Surprisingly, out of 38 LTTRs, only one severely affected intestinal colonization in the suckling mouse model of cholera: the methionine metabolism regulator, MetR. Genetic analysis of genes influenced by MetR revealed thatglyA1andmetJwere also required for intestinal colonization. Chromatin immunoprecipitation of MetR and quantitative reverse transcription-PCR (qRT-PCR) confirmed interaction with and regulation ofglyA1, indicating that misregulation ofglyA1is likely responsible for the colonization defect observed in themetRmutant. TheglyA1mutant was auxotrophic for glycine but exhibited wild-type trimethoprim sensitivity, making folate deficiency an unlikely cause of its colonization defect. MetJ regulatory mutants are not auxotrophic but are likely altered in the regulation of amino acid-biosynthetic pathways, including those for methionine, glycine, and serine, and this misregulation likely explains its colonization defect. However, mutants defective in methionine, serine, and cysteine biosynthesis exhibited wild-type virulence, suggesting that these amino acids can be scavenged in vivo. Taken together, our results suggest that glycine biosynthesis may be required to alleviate an in vivo nutritional restriction in the mouse intestine; however, additional roles for glycine may exist. Irrespective of the precise nature of this requirement, this study illustrates the importance of pathogen metabolism, and the regulation thereof, as a virulence factor.IMPORTANCEVibrio choleraecontinues to be a severe cause of morbidity and mortality in developing countries. Identification ofV. choleraefactors critical to disease progression offers the potential to develop or improve upon therapeutics and prevention strategies. To increase the efficiency of virulence factor discovery, we employed a regulator-centric approach to multiplex our in vivo screening capabilities and allow whole regulons inV. choleraeto be interrogated for pathogenic potential. We identified MetR as a new virulence regulator and serine hydroxymethyltransferase GlyA1 as a new MetR-regulated virulence factor, both required byV. choleraeto colonize the infant mouse intestine. Bacterial metabolism is a prerequisite to virulence, and current knowledge of in vivo metabolism of pathogens is limited. Here, we expand the known role of amino acid metabolism and regulation in virulence and offer new insights into the in vivo metabolic requirements ofV. choleraewithin the mouse intestine.


Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 19 ◽  
Author(s):  
Maria B. Nowakowska ◽  
François P. Douillard ◽  
Miia Lindström

The botulinum neurotoxin (BoNT) has been extensively researched over the years in regard to its structure, mode of action, and applications. Nevertheless, the biological roles of four proteins encoded from a number of BoNT gene clusters, i.e., OrfX1-3 and P47, are unknown. Here, we investigated the diversity of orfX-p47 gene clusters using in silico analytical tools. We show that the orfX-p47 cluster was not only present in the genomes of BoNT-producing bacteria but also in a substantially wider range of bacterial species across the bacterial phylogenetic tree. Remarkably, the orfX-p47 cluster was consistently located in proximity to genes coding for various toxins, suggesting that OrfX1-3 and P47 may have a conserved function related to toxinogenesis and/or pathogenesis, regardless of the toxin produced by the bacterium. Our work also led to the identification of a putative novel BoNT-like toxin gene cluster in a Bacillus isolate. This gene cluster shares striking similarities to the BoNT cluster, encoding a bont/ntnh-like gene and orfX-p47, but also differs from it markedly, displaying additional genes putatively encoding the components of a polymorphic ABC toxin complex. These findings provide novel insights into the biological roles of OrfX1, OrfX2, OrfX3, and P47 in toxinogenesis and pathogenesis of BoNT-producing and non-producing bacteria.


2014 ◽  
Vol 81 (5) ◽  
pp. 1708-1714 ◽  
Author(s):  
Min-Sik Kim ◽  
Ae Ran Choi ◽  
Seong Hyuk Lee ◽  
Hae-Chang Jung ◽  
Seung Seob Bae ◽  
...  

ABSTRACTGenome analysis revealed the existence of a putative transcriptional regulatory system governing CO metabolism inThermococcus onnurineusNA1, a carboxydotrophic hydrogenogenic archaeon. The regulatory system is composed of CorQ with a 4-vinyl reductase domain and CorR with a DNA-binding domain of the LysR-type transcriptional regulator family in close proximity to the CO dehydrogenase (CODH) gene cluster. Homologous genes of the CorQR pair were also found in the genomes ofThermococcusspecies and “CandidatusKorarchaeum cryptofilum” OPF8. In-frame deletion of eithercorQorcorRcaused a severe impairment in CO-dependent growth and H2production. WhencorQandcorRdeletion mutants were complemented by introducing thecorQRgenes under the control of a strong promoter, the mRNA and protein levels of the CODH gene were significantly increased in a ΔCorR strain complemented with integratedcorQR(ΔCorR/corQR↑) compared with those in the wild-type strain. In addition, the ΔCorR/corQR↑strain exhibited a much higher H2production rate (5.8-fold) than the wild-type strain in a bioreactor culture. The H2production rate (191.9 mmol liter−1h−1) and the specific H2production rate (249.6 mmol g−1h−1) of this strain were extremely high compared with those of CO-dependent H2-producing prokaryotes reported so far. These results suggest that thecorQRgenes encode a positive regulatory protein pair for the expression of a CODH gene cluster. The study also illustrates that manipulation of the transcriptional regulatory system can improve biological H2production.


2004 ◽  
Vol 72 (11) ◽  
pp. 6589-6596 ◽  
Author(s):  
Ricky L. Ulrich ◽  
David DeShazer ◽  
Harry B. Hines ◽  
Jeffrey A. Jeddeloh

ABSTRACT Numerous gram-negative bacterial pathogens regulate virulence factor expression by using a cell density mechanism termed quorum sensing (QS). An in silico analysis of the Burkholderia mallei ATCC 23344 genome revealed that it encodes at least two luxI and four luxR homologues. Using mass spectrometry, we showed that wild-type B. mallei produces the signaling molecules N-octanoyl-homoserine lactone and N-decanoyl-homoserine lactone. To determine if QS is involved in the virulence of B. mallei, we generated mutations in each putative luxIR homologue and tested the pathogenicities of the derivative strains in aerosol BALB/c mouse and intraperitoneal hamster models. Disruption of the B. mallei QS alleles, especially in RJ16 (bmaII) and RJ17 (bmaI3), which are luxI mutants, significantly reduced virulence, as indicated by the survival of mice who were aerosolized with 104 CFU (10 50% lethal doses [LD50s]). For the B. mallei transcriptional regulator mutants (luxR homologues), mutation of the bmaR5 allele resulted in the most pronounced decrease in virulence, with 100% of the challenged animals surviving a dose of 10 LD50s. Using a Syrian hamster intraperitoneal model of infection, we determined the LD50s for wild-type B. mallei and each QS mutant. An increase in the relative LD50 was found for RJ16 (bmaI1) (>967 CFU), RJ17 (bmaI3) (115 CFU), and RJ20 (bmaR5) (151 CFU) compared to wild-type B. mallei (<13 CFU). These findings demonstrate that B. mallei carries multiple luxIR homologues that either directly or indirectly regulate the biosynthesis of an essential virulence factor(s) that contributes to the pathogenicity of B. mallei in vivo.


2005 ◽  
Vol 73 (1) ◽  
pp. 342-351 ◽  
Author(s):  
G. N. Belibasakis ◽  
A. Johansson ◽  
Y. Wang ◽  
C. Chen ◽  
S. Kalfas ◽  
...  

ABSTRACT Actinobacillus actinomycetemcomitans is associated with localized aggressive periodontitis, a disease characterized by rapid loss of the alveolar bone surrounding the teeth. Receptor activator of NF-κB Ligand (RANKL) and osteoprotegerin (OPG) are two molecules that regulate osteoclast formation and bone resorption. RANKL induces osteoclast differentiation and activation, whereas OPG blocks this process by acting as a decoy receptor for RANKL. The purpose of this study was to investigate the effect of A. actinomycetemcomitans on the expression of RANKL and OPG in human gingival fibroblasts and periodontal ligament cells. RANKL mRNA expression was induced in both cell types challenged by A. actinomycetemcomitans extract, whereas OPG mRNA expression remained unaffected. Cell surface RANKL protein was also induced by A. actinomycetemcomitans, whereas there was no change in OPG protein secretion. A cytolethal distending toxin (Cdt) gene-knockout strain of A. actinomycetemcomitans did not induce RANKL expression, in contrast to its wild-type strain. Purified Cdt from Haemophilus ducreyi alone, or in combination with extract from the A. actinomycetemcomitans cdt mutant strain, induced RANKL expression. Pretreatment of A. actinomycetemcomitans wild-type extract with Cdt antiserum abolished RANKL expression. In conclusion, A. actinomycetemcomitans induces RANKL expression in periodontal connective tissue cells. Cdt is crucial for this induction and may therefore be involved in the pathological bone resorption during the process of localized aggressive periodontitis.


2019 ◽  
Author(s):  
Trevor Kane ◽  
Katelyn E. Carothers ◽  
Yunjuan Bao ◽  
Won-Sik Yeo ◽  
Taeok Bae ◽  
...  

AbstractBackgroundStaphylococcus aureus (S. aureus) is a major human pathogen owing to its arsenal of virulence factors, as well as its acquisition of multi-antibiotic resistance. Here we report the identification of a Streptolysin S (SLS) like biosynthetic gene cluster in a highly virulent community-acquired methicillin resistant S. aureus (MRSA) isolate, JKD6159. Examination of the SLS-like gene cluster in JKD6159 shows significant homology and gene organization to the SLS-associated biosynthetic gene (sag) cluster responsible for the production of the major hemolysin SLS in Group A Streptococcus.ResultsWe took a comprehensive approach to elucidating the putative role of the sag gene cluster in JKD6159 by constructing a mutant in which one of the biosynthesis genes (sagB homologue) was deleted in the parent JKD6159 strain. Assays to evaluate bacterial gene regulation, biofilm formation, antimicrobial activity, as well as complete host cell response profile and comparative in vivo infections in Balb/Cj mice were conducted.ConclusionsAlthough no significant phenotypic changes were observed in our assays, we postulate that the SLS-like toxin produced by this strain of S. aureus may be a highly specialized virulence factor utilized in specific environments for selective advantage; studies to better understand the role of this newly discovered virulence factor in S. aureus warrant further investigation.


Sign in / Sign up

Export Citation Format

Share Document