scholarly journals A Novel CO-Responsive Transcriptional Regulator and Enhanced H2Production by an Engineered Thermococcus onnurineus NA1 Strain

2014 ◽  
Vol 81 (5) ◽  
pp. 1708-1714 ◽  
Author(s):  
Min-Sik Kim ◽  
Ae Ran Choi ◽  
Seong Hyuk Lee ◽  
Hae-Chang Jung ◽  
Seung Seob Bae ◽  
...  

ABSTRACTGenome analysis revealed the existence of a putative transcriptional regulatory system governing CO metabolism inThermococcus onnurineusNA1, a carboxydotrophic hydrogenogenic archaeon. The regulatory system is composed of CorQ with a 4-vinyl reductase domain and CorR with a DNA-binding domain of the LysR-type transcriptional regulator family in close proximity to the CO dehydrogenase (CODH) gene cluster. Homologous genes of the CorQR pair were also found in the genomes ofThermococcusspecies and “CandidatusKorarchaeum cryptofilum” OPF8. In-frame deletion of eithercorQorcorRcaused a severe impairment in CO-dependent growth and H2production. WhencorQandcorRdeletion mutants were complemented by introducing thecorQRgenes under the control of a strong promoter, the mRNA and protein levels of the CODH gene were significantly increased in a ΔCorR strain complemented with integratedcorQR(ΔCorR/corQR↑) compared with those in the wild-type strain. In addition, the ΔCorR/corQR↑strain exhibited a much higher H2production rate (5.8-fold) than the wild-type strain in a bioreactor culture. The H2production rate (191.9 mmol liter−1h−1) and the specific H2production rate (249.6 mmol g−1h−1) of this strain were extremely high compared with those of CO-dependent H2-producing prokaryotes reported so far. These results suggest that thecorQRgenes encode a positive regulatory protein pair for the expression of a CODH gene cluster. The study also illustrates that manipulation of the transcriptional regulatory system can improve biological H2production.

2011 ◽  
Vol 56 (1) ◽  
pp. 110-114 ◽  
Author(s):  
Qinghua Zhu ◽  
Jun Li ◽  
Junying Ma ◽  
Minghe Luo ◽  
Bo Wang ◽  
...  

ABSTRACTMarinactinospora thermotoleransSCSIO 00652, originating from a deep-sea marine sediment of the South China Sea, was discovered to produce antimicrobial nucleoside antibiotic A201A. Whole-genome scanning and annotation strategies enabled us to localize the genes responsible for A201A biosynthesis and to experimentally identify the gene cluster; inactivation ofmtdF, an oxidoreductase gene within the suspected gene cluster, abolished A201A production. Bioinformatics analysis revealed that a gene designatedmtdAfurthest upstream within the A201A biosynthetic gene cluster encodes a GntR family transcriptional regulator. To determine the role of MtdA in regulating A201A production, themtdAgene was inactivated in frame and the resulting ΔmtdAmutant was fermented alongside the wild-type strain as a control. High-performance liquid chromatography (HPLC) analyses of fermentation extracts revealed that the ΔmtdAmutant produced A201A in a yield ∼25-fold superior to that of the wild-type strain, thereby demonstrating thatMtdAis a negative transcriptional regulator governing A201A biosynthesis. By virtue of its high production capacity, the ΔmtdAmutant constitutes an ideal host for the efficient large-scale production of A201A. These results validateM. thermotoleransas an emerging source of antibacterial agents and highlight the efficiency of metabolic engineering for antibiotic titer improvement.


2013 ◽  
Vol 79 (6) ◽  
pp. 2048-2053 ◽  
Author(s):  
Min-Sik Kim ◽  
Seung Seob Bae ◽  
Yun Jae Kim ◽  
Tae Wan Kim ◽  
Jae Kyu Lim ◽  
...  

ABSTRACTHydrogenogenic CO oxidation (CO + H2O → CO2+ H2) has the potential for H2production as a clean renewable fuel.Thermococcus onnurineusNA1, which grows on CO and produces H2, has a unique gene cluster encoding the carbon monoxide dehydrogenase (CODH) and the hydrogenase. The gene cluster was identified as essential for carboxydotrophic hydrogenogenic metabolism by gene disruption and transcriptional analysis. To develop a strain producing high levels of H2, the gene cluster was placed under the control of a strong promoter. The resulting mutant, MC01, showed 30-fold-higher transcription of the mRNA encoding CODH, hydrogenase, and Na+/H+antiporter and a 1.8-fold-higher specific activity for CO-dependent H2production than did the wild-type strain. The H2production potential of the MC01 mutant in a bioreactor culture was 3.8-fold higher than that of the wild-type strain. The H2production rate of the engineered strain was severalfold higher than those of any other CO-dependent H2-producing prokaryotes studied to date. The engineered strain also possessed high activity for the bioconversion of industrial waste gases created as a by-product during steel production. This work represents the first demonstration of H2production from steel mill waste gas using a carboxydotrophic hydrogenogenic microbe.


2017 ◽  
Vol 199 (20) ◽  
Author(s):  
Zhen Xu ◽  
Miaomiao Wang ◽  
Bang-Ce Ye

ABSTRACT Propanol stimulates erythromycin biosynthesis by increasing the supply of propionyl coenzyme A (propionyl-CoA), a starter unit of erythromycin production in Saccharopolyspora erythraea. Propionyl-CoA is assimilated via propionyl-CoA carboxylase to methylmalonyl-CoA, an extender unit of erythromycin. We found that the addition of n-propanol or propionate caused a 4- to 16-fold increase in the transcriptional levels of the SACE_3398–3400 locus encoding propionyl-CoA carboxylase, a key enzyme in propionate metabolism. The regulator PccD was proved to be directly involved in the transcription regulation of the SACE_3398–3400 locus by EMSA and DNase I footprint analysis. The transcriptional levels of SACE_3398–3400 were upregulated 15- to 37-fold in the pccD gene deletion strain (ΔpccD) and downregulated 3-fold in the pccD overexpression strain (WT/pIB-pccD), indicating that PccD was a negative transcriptional regulator of SACE_3398–3400. The ΔpccD strain has a higher growth rate than that of the wild-type strain (WT) on Evans medium with propionate as the sole carbon source, whereas the growth of the WT/pIB-pccD strain was repressed. As a possible metabolite of propionate metabolism, methylmalonic acid was identified as an effector molecule of PccD and repressed its regulatory activity. A higher level of erythromycin in the ΔpccD strain was observed compared with that in the wild-type strain. Our study reveals a regulatory mechanism in propionate metabolism and suggests new possibilities for designing metabolic engineering to increase erythromycin yield. IMPORTANCE Our work has identified the novel regulator PccD that controls the expression of the gene for propionyl-CoA carboxylase, a key enzyme in propionyl-CoA assimilation in S. erythraea. PccD represses the generation of methylmalonyl-CoA through carboxylation of propionyl-CoA and reveals an effect on biosynthesis of erythromycin. This finding provides novel insight into propionyl-CoA assimilation, and extends our understanding of the regulatory mechanisms underlying the biosynthesis of erythromycin.


2013 ◽  
Vol 79 (9) ◽  
pp. 2899-2905 ◽  
Author(s):  
Kuan-Chih Chen ◽  
Akshaya Ravichandran ◽  
Adam Guerrero ◽  
Peng Deng ◽  
Sonya M. Baird ◽  
...  

ABSTRACTBurkholderia contaminansstrain MS14 produces the antifungal compound occidiofungin, which is responsible for significant antifungal activities against a broad range of plant and animal fungal pathogens. Occidiofungin is a cyclic glycolipopeptide made up of eight amino acids and one xylose. A 56-kbocfgene cluster was determined to be essential for occidiofungin production. In this study, theocfCgene, which is located downstream ofocfDand upstream of theocfBgene in theocfgene cluster, was examined. Antifungal activity of theocfCgene mutant MS14KC1 was reduced against the indicator fungusGeotrichum candidumcompared with that of the wild-type strain. Furthermore, the analysis of the protein sequence suggests that theocfCgene encodes a glycosyltransferase. Biochemical analyses using nuclear magnetic resonance (NMR) and mass spectroscopy revealed that theocfCmutant produced the occidiofungin without the xylose. The purifiedocfCmutant MS14KC1 product had a level of bioactivity similar to that of the wild-type product. The revertant MS14KC1-R of theocfCmutant produced the same antifungal activity level on plate assays and the same antifungal compound based on high-performance liquid chromatography (HPLC) and mass spectroscopy analysis as wild-type strain MS14. Collectively, the study demonstrates that theocfCgene encodes a glycosyltransferase responsible to add a xylose to the occidiofungin molecule and that the presence of the xylose is not important for antifungal activity againstCandidaspecies. The finding provides a novel variant for future studies aimed at evaluating its use for inhibiting clinical and agricultural fungi, and the finding could also simplify the chemical synthesis of occidiofungin variants.


2013 ◽  
Vol 81 (10) ◽  
pp. 3566-3576 ◽  
Author(s):  
Xiangyu Mou ◽  
Edward J. Spinard ◽  
Maureen V. Driscoll ◽  
Wenjing Zhao ◽  
David R. Nelson

ABSTRACTHemolysins produced byVibrio anguillarumhave been implicated in the development of hemorrhagic septicemia during vibriosis, a fatal fish disease. Previously, two hemolysin gene clusters responsible for the hemolysis and cytotoxicity ofV. anguillarumwere identified: thevah1-plpgene cluster and thertxACHBDEgene cluster. In this study, we identified thehnsgene, which encodes the H-NS protein and acts as a negative regulator of both gene clusters. TheV. anguillarumH-NS protein shares strong homology with other bacterial H-NS proteins. Anhnsmutant exhibited increased hemolytic activity and cytotoxicity compared to the wild-type strain. Complementation of thehnsmutation restored hemolytic activity and cytotoxicity levels to nearly wild-type levels. Furthermore, expression ofrtxA,rtxH,rtxB,vah1, andplpincreased in thehnsmutant and decreased in thehns-complemented mutant strain compared to expression in the wild-type strain. Additionally, experiments using DNase I showed that purified recombinant H-NS protected multiple sites in the promoter regions of both gene clusters. Thehnsmutant also exhibited significantly attenuated virulence against rainbow trout. Complementation of thehnsmutation restored virulence to wild-type levels, suggesting that H-NS regulates many genes that affect fitness and virulence. Previously, we showed that HlyU is a positive regulator of expression for both gene clusters. In this study, we demonstrate that upregulation byhlyUishnsdependent, suggesting that H-NS acts to repress or silence both gene clusters and HlyU acts to relieve that repression or silencing.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Eduard Melief ◽  
Shilah A. Bonnett ◽  
Edison S. Zuniga ◽  
Tanya Parish

ABSTRACT The diaminoquinazoline series has good potency against Mycobacterium tuberculosis. Resistant isolates have mutations in Rv3161c, a putative dioxygenase. We carried out metabolite analysis on a wild-type strain and an Rv3161c mutant strain after exposure to a diaminoquinazoline. The parental compound was found in intracellular extracts from the mutant but not the wild type. A metabolite consistent with a monohydroxylated form was identified in the wild type. These data support the hypothesis that Rv3161c metabolizes diaminoquinazolines in M. tuberculosis.


2016 ◽  
Vol 82 (19) ◽  
pp. 5815-5823 ◽  
Author(s):  
Xiaolan Wang ◽  
Beibei Liu ◽  
Yafeng Dou ◽  
Hongjie Fan ◽  
Shaohui Wang ◽  
...  

ABSTRACTRiemerella anatipestiferis a major bacterial pathogen that causes septicemic and exudative diseases in domestic ducks. In our previous study, we found that deletion of theAS87_01735gene significantly decreased the bacterial virulence ofR. anatipestiferstrain Yb2 (mutant RA625). TheAS87_01735gene was predicted to encode a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD+salvage pathway. In this study, theAS87_01735gene was expressed and identified as the PncA-encoding gene, using an enzymatic assay. Western blot analysis demonstrated thatR. anatipestiferPncA was localized to the cytoplasm. The mutant strain RA625 (named Yb2ΔpncAin this study) showed a similar growth rate but decreased NAD+quantities in both the exponential and stationary phases in tryptic soy broth culture, compared with the wild-type strain Yb2. In addition, Yb2ΔpncA-infected ducks showed much lower bacterial loads in their blood, and no visible histological changes were observed in the heart, liver, and spleen. Furthermore, Yb2ΔpncAimmunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Our results suggest that theR. anatipestiferAS87_01735gene encodes PncA, which is an important virulence factor, and that the Yb2ΔpncAmutant can be used as a novel live vaccine candidate.IMPORTANCERiemerella anatipestiferis reported worldwide as a cause of septicemic and exudative diseases of domestic ducks. ThepncAgene encodes a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD+salvage pathway. In this study, we identified and characterized thepncA-homologous geneAS87_01735inR. anatipestiferstrain Yb2.R. anatipestiferPncA is a cytoplasmic protein that possesses similar PncA activity, compared with other organisms. Generation of thepncAmutant Yb2ΔpncAled to a decrease in the NAD+content, which was associated with decreased capacity for invasion and attenuated virulence in ducks. Furthermore, Yb2ΔpncAimmunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Altogether, these results suggest that PncA contributes to the virulence ofR. anatipestiferand that the Yb2ΔpncAmutant can be used as a novel live vaccine candidate.


2018 ◽  
Vol 200 (15) ◽  
Author(s):  
Blake Ushijima ◽  
Claudia C. Häse

ABSTRACTChemotaxis, the directed movement toward or away from a chemical signal, can be essential to bacterial pathogens for locating hosts or avoiding hostile environments. The coral pathogenVibrio coralliilyticuschemotaxes toward coral mucus; however, chemotaxis has not been experimentally demonstrated to be important for virulence. To further examine this, in-frame mutations were constructed in genes predicted to be important forV. coralliilyticuschemotaxis. MostVibriogenomes contain multiple homologs of various chemotaxis-related genes, and two paralogs of each forcheB,cheR, andcheAwere identified. Based on single mutant analyses, the paralogscheB2,cheR2, andcheA1were essential for chemotaxis in laboratory assays. As predicted, the ΔcheA1and ΔcheR2strains had a smooth-swimming pattern, while the ΔcheB2strain displayed a zigzag pattern when observed under light microscopy. However, these mutants, unlike the parent strain, were unable to chemotax toward the known attractants coral mucus, dimethylsulfoniopropionate, andN-acetyl-d-glucosamine. The ΔcheB2strain and an aflagellate ΔfliG1strain were avirulent to coral, while the ΔcheA1and ΔcheR2strains were hypervirulent (90 to 100% infection within 14 h on average) compared to the wild-type strain (66% infection within 36 h on average). Additionally, the ΔcheA1and ΔcheR2strains appeared to better colonize coral fragments than the wild-type strain. These results suggest that although chemotaxis may be involved with infection (the ΔcheB2strain was avirulent), a smooth-swimming phenotype is important for bacterial colonization and infection. This study provides valuable insight into understandingV. coralliilyticuspathogenesis and how this pathogen may be transmitted between hosts.IMPORTANCECorals are responsible for creating the immense structures that are essential to reef ecosystems; unfortunately, pathogens like the bacteriumVibrio coralliilyticuscan cause fatal infections of reef-building coral species. However, compared to related human pathogens, the mechanisms by whichV. coralliilyticusinitiates infections and locates new coral hosts are poorly understood. This study investigated the effects of chemotaxis, the directional swimming in response to chemical signals, and bacterial swimming patterns on infection of the coralMontipora capitata. Infection experiments with different mutant strains suggested that a smooth-swimming pattern resulted in hypervirulence. These results demonstrate that the role of chemotaxis in coral infection may not be as straightforward as previously hypothesized and provide valuable insight intoV. coralliilyticuspathogenesis.


2019 ◽  
Vol 87 (8) ◽  
Author(s):  
Elodie Cuenot ◽  
Transito Garcia-Garcia ◽  
Thibaut Douche ◽  
Olivier Gorgette ◽  
Pascal Courtin ◽  
...  

ABSTRACTClostridium difficileis the leading cause of antibiotic-associated diarrhea in adults. During infection,C. difficilemust detect the host environment and induce an appropriate survival strategy. Signal transduction networks involving serine/threonine kinases (STKs) play key roles in adaptation, as they regulate numerous physiological processes. PrkC ofC. difficileis an STK with two PASTA domains. We showed that PrkC is membrane associated and is found at the septum. We observed that deletion ofprkCaffects cell morphology with an increase in mean size, cell length heterogeneity, and presence of abnormal septa. A ΔprkCmutant was able to sporulate and germinate but was less motile and formed more biofilm than the wild-type strain. Moreover, a ΔprkCmutant was more sensitive to antimicrobial compounds that target the cell envelope, such as the secondary bile salt deoxycholate, cephalosporins, cationic antimicrobial peptides, and lysozyme. This increased susceptibility was not associated with differences in peptidoglycan or polysaccharide II composition. However, the ΔprkCmutant had less peptidoglycan and released more polysaccharide II into the supernatant. A proteomic analysis showed that the majority ofC. difficileproteins associated with the cell wall were less abundant in the ΔprkCmutant than the wild-type strain. Finally, in a hamster model of infection, the ΔprkCmutant had a colonization delay that did not significantly affect overall virulence.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Jan Kampf ◽  
Jan Gerwig ◽  
Kerstin Kruse ◽  
Robert Cleverley ◽  
Miriam Dormeyer ◽  
...  

ABSTRACT Biofilm formation by Bacillus subtilis requires the expression of genes encoding enzymes for extracellular polysaccharide synthesis and for an amyloid-like protein. The master regulator SinR represses all the corresponding genes, and repression of these key biofilm genes is lifted when SinR interacts with its cognate antagonist proteins. The YmdB phosphodiesterase is a recently discovered factor that is involved in the control of SinR activity: cells lacking YmdB exhibit hyperactive SinR and are unable to relieve the repression of the biofilm genes. In this study, we have examined the dynamics of gene expression patterns in wild-type and ymdB mutant cells by microfluidic analysis coupled to time-lapse microscopy. Our results confirm the bistable expression pattern for motility and biofilm genes in the wild-type strain and the loss of biofilm gene expression in the mutant. Moreover, we demonstrated dynamic behavior in subpopulations of the wild-type strain that is characterized by switches in sets of the expressed genes. In order to gain further insights into the role of YmdB, we isolated a set of spontaneous suppressor mutants derived from ymdB mutants that had regained the ability to form complex colonies and biofilms. Interestingly, all of the mutations affected SinR. In some mutants, large genomic regions encompassing sinR were deleted, whereas others had alleles encoding SinR variants. Functional and biochemical studies with these SinR variants revealed how these proteins allowed biofilm gene expression in the ymdB mutant strains. IMPORTANCE Many bacteria are able to choose between two mutually exclusive lifestyles: biofilm formation and motility. In the model bacterium Bacillus subtilis, this choice is made by each individual cell rather than at the population level. The transcriptional repressor SinR is the master regulator in this decision-making process. The regulation of SinR activity involves complex control of its own expression and of its interaction with antagonist proteins. We show that the YmdB phosphodiesterase is required to allow the expression of SinR-repressed genes in a subpopulation of cells and that such subpopulations can switch between different SinR activity states. Suppressor analyses revealed that ymdB mutants readily acquire mutations affecting SinR, thus restoring biofilm formation. These findings suggest that B. subtilis cells experience selective pressure to form the extracellular matrix that is characteristic of biofilms and that YmdB is required for the homeostasis of SinR and/or its antagonists.


Sign in / Sign up

Export Citation Format

Share Document