scholarly journals Dysregulated Inflammatory Response to Candida albicans in a C5-Deficient Mouse Strain

2004 ◽  
Vol 72 (10) ◽  
pp. 5868-5876 ◽  
Author(s):  
Alaka Mullick ◽  
Miria Elias ◽  
Serge Picard ◽  
Lucie Bourget ◽  
Orce Jovcevski ◽  
...  

ABSTRACT Experimental infection of inbred mouse strains with Candida albicans provides a good model system to identify host genetic determinants that regulate onset of, response to, and ultimate outcome of disseminated candidiasis. The A/J mouse strain is exquisitely sensitive to infection with C. albicans, while the C57BL/6J strain is relatively resistant, as measured by survival following intravenous injection of Candida blastospores. This differential susceptibility is caused by an A/J-specific loss-of-function mutation in the C5 component of the complement pathway. C5 plays several critical roles in host response to infection, including target lysis and phagocyte recruitment. Therefore, to determine which of its functions were required for host resistance to candidiasis, a detailed comparative analysis of pathophysiology and host response to acute C. albicans infection was conducted in A/J and C57BL/6J mice. C5-sufficient C57BL/6J mice were found to succumb late in infection due to severe kidney pathology, typified by fungal replication and robust neutrophil-based inflammatory response associated with extensive tissue damage. In contrast, A/J mice were moribund within 24 h postinfection but displayed little if any kidney damage despite an inability to mobilize granulocytes and a high fungal load in the kidney. Rather, C5 deficiency in A/J mice was associated with higher levels of circulating cytokines tumor necrosis factor alpha, interleukin-6, monocyte chemotactic protein 1 (MCP-1), MCP-5, and eotaxin in response to C. albicans. Transfer of the C5-defective allele from A/J onto a C57BL/6J genetic background in recombinant congenic strain BcA17 recapitulated the phenotypic aspects of the susceptibility of A/J mice to C. albicans, confirming the causative role of C5 deficiency in the dysregulated cytokine response.

2010 ◽  
Vol 78 (11) ◽  
pp. 4754-4762 ◽  
Author(s):  
Donatella Pietrella ◽  
Anna Rachini ◽  
Neelam Pandey ◽  
Lydia Schild ◽  
Mihai Netea ◽  
...  

ABSTRACT The secretion of aspartic proteases (Saps) has long been recognized as a virulence-associated trait of the pathogenic yeast Candida albicans. In this study, we report that different recombinant Saps, including Sap1, Sap2, Sap3, and Sap6, have differing abilities to induce secretion of proinflammatory cytokines by human monocytes. In particular Sap1, Sap2, and Sap6 significantly induced interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and IL-6 production. Sap3 was able to stimulate the secretion of IL-1β and TNF-α. All Saps tested were able to induce Ca2+ influx in monocytes. Treatment of these Saps with pepstatin A did not have any effect on cytokine secretion, indicating that their stimulatory potential was independent from their proteolytic activity. The capacity of Saps to induce inflammatory cytokine production was also independent from protease-activated receptor (PAR) activation and from the optimal pH for individual Sap activity. The interaction of Saps with monocytes induced Akt activation and phosphorylation of IκBα, which mediates translocation of NF-κB into the nucleus. Overall, these results suggest that individual Sap proteins can induce an inflammatory response and that this phenomenon is independent from the pH of a specific host niche and from Sap enzymatic activity. The inflammatory response is partially dependent on Sap denaturation and is triggered by the Akt/NF-κB activation pathway. Our data suggest a novel, activity-independent aspect of Saps during interactions of C. albicans with the host.


2018 ◽  
Vol 86 (5) ◽  
Author(s):  
Wayne Nishio Ayre ◽  
Genevieve Melling ◽  
Camille Cuveillier ◽  
Madhan Natarajan ◽  
Jessica L. Roberts ◽  
...  

ABSTRACTThis study investigated the host response to a polymicrobial pulpal infection consisting ofStreptococcus anginosusandEnterococcus faecalis, bacteria commonly implicated in dental abscesses and endodontic failure, using a validatedex vivorat tooth model. Tooth slices were inoculated with planktonic cultures ofS. anginosusorE. faecalisalone or in coculture atS. anginosus/E. faecalisratios of 50:50 and 90:10. Attachment was semiquantified by measuring the area covered by fluorescently labeled bacteria. Host response was established by viable histological cell counts, and inflammatory response was measured using reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemistry. A significant reduction in cell viability was observed for single and polymicrobial infections, with no significant differences between infection types (∼2,000 cells/mm2for infected pulps compared to ∼4,000 cells/mm2for uninfected pulps).E. faecalisdemonstrated significantly higher levels of attachment (6.5%) thanS. anginosusalone (2.3%) and mixed-species infections (3.4% for 50:50 and 2.3% for 90:10), with a remarkable affinity for the pulpal vasculature. Infections withE. faecalisdemonstrated the greatest increase in tumor necrosis factor alpha (TNF-α) (47.1-fold forE. faecalis, 14.6-fold forS. anginosus, 60.1-fold for 50:50, and 25.0-fold for 90:10) and interleukin 1β (IL-1β) expression (54.8-fold forE. faecalis, 8.8-fold forS. anginosus, 54.5-fold for 50:50, and 39.9-fold for 90:10) compared to uninfected samples. Immunohistochemistry confirmed this, with the majority of inflammation localized to the pulpal vasculature and odontoblast regions. Interestingly,E. faecalissupernatant and heat-killedE. faecalistreatments were unable to induce the same inflammatory response, suggestingE. faecalispathogenicity in pulpitis is linked to its greater ability to attach to the pulpal vasculature.


2010 ◽  
Vol 78 (4) ◽  
pp. 1670-1681 ◽  
Author(s):  
Yin Wang ◽  
Uma Nagarajan ◽  
Leah Hennings ◽  
Anne K. Bowlin ◽  
Roger G. Rank

ABSTRACT Very little is known about the host response to chlamydial genital infection in the male, particularly about the nature of the local response in the urethra. In this study, the pathological and immunologic responses to urethral infection of the male guinea pig with Chlamydia caviae (Chlamydophila caviae) were characterized both during a primary infection and following a challenge infection. A dose-response experiment found that the 50% infectious dose for male urethral infection was 78 inclusion-forming units. The histopathologic response was similar to that of the female, with an initial acute inflammatory response followed by a chronic inflammatory response and plasma cell infiltration. Production of IgG and IgA antibodies in local urethral secretions developed following infection, and levels of both increased in a typical anamnestic response following a challenge infection. CD4 and CD8 T cells, as well as B cells, were observed in the local site by flow cytometry, with a slightly increased number of CD8 cells. Following challenge infection, the dominant anamnestic response was solely in the B-cell compartment, with only a minimal number of T cells. The T-cell response was clearly a Th1 response, as judged by increased levels of gamma interferon (IFN-γ), interleukin-12 p40 (IL-12p40), and IL-2. The proinflammatory cytokines and chemokines IL-8, IL-1β, tumor necrosis factor alpha (TNF-α), CCL2 (monocyte chemoattractant protein 1 [MCP-1]), and CCL5 (RANTES) were elicited in the urethra following primary infection, but only CCL5 showed increased levels upon challenge. This study represents the first comprehensive analysis of the local immune response in the male urethra to a chlamydial genital infection.


2019 ◽  
Vol 4 ◽  
pp. 124
Author(s):  
Barbara Clough ◽  
Ryan Finethy ◽  
Rabia T. Khan ◽  
Daniel Fisch ◽  
Sarah Jordan ◽  
...  

Background: Infections cause the production of inflammatory cytokines such as Interferon gamma (IFNγ). IFNγ in turn prompts the upregulation of a range of host defence proteins including members of the family of guanylate binding proteins (Gbps). In humans and mice alike, GBPs restrict the intracellular replication of invasive microbes and promote inflammation. To study the physiological functions of Gbp family members, the most commonly chosen in vivo models are mice harbouring loss-of-function mutations in either individual Gbp genes or the entire Gbp gene cluster on mouse chromosome 3. Individual Gbp deletion strains differ in their design, as some strains exist on a pure C57BL/6 genetic background, while other strains contain a 129-derived genetic interval encompassing the Gbp gene cluster on an otherwise C57BL/6 genetic background. Methods: To determine whether the presence of 129 alleles of paralogous Gbps could influence the phenotypes of 129-congenic Gbp-deficient strains, we studied the expression of Gbps in both C57BL/6J and 129/Sv mice following in vivo stimulation with adjuvants and after infection with either Toxoplasma gondii or Shigella flexneri. Results: We show that C57BL/6J relative to 129/Sv mice display moderately elevated expression of Gbp2, but more prominently, are also defective for Gbp2b (formerly Gbp1) mRNA induction upon immune priming. Notably, Toxoplasma infections induce robust Gbp2b protein expression in both strains of mice, suggestive of a Toxoplasma-activated mechanism driving Gbp2b protein translation. We further find that the higher expression of Gbp2b mRNA in 129/Sv mice correlates with a gene duplication event at the Gbp2b locus resulting in two copies of the Gbp2b gene on the haploid genome of the 129/Sv strain. Conclusions: Our findings demonstrate functional differences between 129 and C57BL/6 Gbp alleles which need to be considered in the design and interpretation of studies utilizing mouse models, particularly for phenotypes influenced by Gbp2 or Gbp2b expression.


2007 ◽  
Vol 56 (9) ◽  
pp. 1138-1144 ◽  
Author(s):  
Caroline Westwater ◽  
Edward Balish ◽  
Thomas F. Warner ◽  
Peter J. Nicholas ◽  
Emily E. Paulling ◽  
...  

Germfree transgenic epsilon 26 mice (Tgϵ26), deficient in natural killer cells and T cells, were colonized (alimentary tract) with Candida albicans wild-type or each of two hyphal transcription factor signalling mutant strains (efg1/efg1, efg1/efg1 cph1/cph1). Each Candida strain colonized the alimentary tract, infected keratinized gastric tissues to a similar extent, and induced a granulocyte-dominated inflammatory response in infected tissues. Both wild-type and mutant strains formed hyphae in vivo and were able to elicit an increase in cytokine [tumour necrosis factor alpha, interleukin (IL)-10 and IL-12] and chemokine (KC and macrophage inflammatory protein-2] mRNAs in infected tissues; however, administration of the wild-type strain was lethal for the Tgϵ26 mice, whereas the mice colonized with the mutant strains survived. Death of the Tgϵ26-colonized mice appeared to be due to occlusive oesophageal candidiasis, and not to disseminated candidiasis of endogenous origin. In contrast, the mutant strains exhibited a significantly reduced capacity to infect (frequency and severity) oro-oesophageal (tongue and oesophagus) tissues. Therefore, the two hyphal signalling-defective mutants were less able to infect oro-oesophageal tissues and were non-lethal, but retained their ability to colonize the alimentary tract with yeast and hyphae, infect keratinized gastric tissues, and evoke an inflammatory response in orogastric tissues.


1973 ◽  
Vol 19 (7) ◽  
pp. 767-769 ◽  
Author(s):  
Stephen I. Vas ◽  
Raymond S. Roy ◽  
Hugh G. Robson

Inbred mouse strains show characteristic susceptibility to S. typhimurium infections. The sensitivity of the same strains to endotoxin is not parallel. While C3H/He J and C57B1/6J mice were highly susceptible to infection they showed more resistance to purified endotoxin than A/J, a mouse strain relatively resistant to infection. These findings suggest that the death of mice during S. typhimurium infection is not due only to toxic effects of its lipopolysaccharide.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1026
Author(s):  
Kazuhiro Okumura ◽  
Megumi Saito ◽  
Eriko Isogai ◽  
Yuichi Wakabayashi

MSM/Ms is a unique inbred mouse strain derived from the Japanese wild mouse, Mus musculus molossinus, which has been approximately 1 million years genetically distant from standard inbred mouse strains mainly derived from M. m. domesticus. Due to its genetic divergence, MSM/Ms has been broadly used in linkage studies. A bacterial artificial chromosome (BAC) library was constructed for the MSM/Ms genome, and sequence analysis of the MSM/Ms genome showed approximately 1% of nucleotides differed from those in the commonly used inbred mouse strain, C57BL/6J. Therefore, MSM/Ms mice are thought to be useful for functional genome studies. MSM/Ms mice show unique characteristics of phenotypes, including its smaller body size, resistance to high-fat-diet-induced diabetes, high locomotive activity, and resistance to age-onset hearing loss, inflammation, and tumorigenesis, which are distinct from those of common inbred mouse strains. Furthermore, ES (Embryonic Stem) cell lines established from MSM/Ms allow the MSM/Ms genome to be genetically manipulated. Therefore, genomic and phenotypic analyses of MSM/Ms reveal novel insights into gene functions that were previously not obtained from research on common laboratory strains. Tumorigenesis-related MSM/Ms-specific genetic traits have been intensively investigated in Japan. Furthermore, radiation-induced thymic lymphomas and chemically-induced skin tumors have been extensively examined using MSM/Ms.


2000 ◽  
Vol 118 (4) ◽  
pp. A743
Author(s):  
Michael Maehler ◽  
Claudia Janke ◽  
Hans J. Hedrich ◽  
Siegfried Wagner

Sign in / Sign up

Export Citation Format

Share Document