scholarly journals pagP Is Required for Resistance to Antibody-Mediated Complement Lysis during Bordetella bronchiseptica Respiratory Infection

2004 ◽  
Vol 72 (5) ◽  
pp. 2837-2842 ◽  
Author(s):  
Mylisa R. Pilione ◽  
Elizabeth J. Pishko ◽  
Andrew Preston ◽  
Duncan J. Maskell ◽  
Eric T. Harvill

ABSTRACT To efficiently colonize and persist in the lower respiratory tract, bacteria must survive multiple host immune mechanisms. Bordetella bronchiseptica is a gram-negative respiratory pathogen that naturally infects mice and persists in the lower respiratory tract for up to 49 days postinoculation. In this work, we examined the effect of mutation of the pagP gene on the persistence of B. bronchiseptica in the lower respiratory tract of mice. The pagP gene encodes a palmitoyl transferase that is responsible for the addition of a palmitoyl group to the lipid A region of B. bronchiseptica lipopolysaccharide. Data presented here confirm that a B. bronchiseptica ΔpagP mutant demonstrates defective persistence in the lower respiratory tract of wild-type mice. We hypothesized that the defective persistence of the B. bronchiseptica ΔpagP mutant was due to an increased susceptibility of this mutant to a host immune response. In vivo data indicate that both B cells and the complement component C3 are required for the reduced bacterial numbers of the ΔpagP mutant on day 14 postinoculation. In addition, an in vitro complement killing assay demonstrated that B. bronchiseptica exhibits pagP-dependent resistance to antibody-mediated complement killing at low concentrations of immune serum. Taken together, these results suggest that pagP is required for B. bronchiseptica to resist antibody-mediated complement lysis during respiratory infection.

2001 ◽  
Vol 90 (3) ◽  
pp. 1111-1118 ◽  
Author(s):  
W. Michael Foster ◽  
Dianne M. Walters ◽  
Malinda Longphre ◽  
Kristin Macri ◽  
Laura M. Miller

The objective of the study was to develop a scintigraphic method for measurement of airway mucociliary clearance in small laboratory rodents such as the mouse. Previous investigations have characterized the secretory cell types present in the mouse airway, but analysis of the mucus transport system has been limited to in vitro examination of tissue explants or invasive in vivo measures of a single airway, the trachea. Three methods were used to deposit insoluble, radioisotopic colloidal particles: oropharyngeal aspiration, intratracheal instillation, and nose-only aerosol inhalation. The initial distribution of particles within the lower respiratory tract was visualized by γ-camera, and clearance of particles was followed intermittently over 6 h and at the conclusion, 24 h postdelivery. Subsets of mice underwent lavage for evidence of tissue inflammation, and others were restudied for reproducibility of the methods. The aspiration and instillation methods of delivery led to greater distributions of deposited activity within the lungs, i.e., ∼60–80% of the total respiratory tract radioactivity, whereas the nose-only aerosol technique attained a distribution of 32% to the lungs. However, the aerosol technique maximized the fraction of particles that cleared the airway over a 24-h period, i.e, deposited onto airway epithelial surfaces and cleared by mucociliary function such that lung retention at 24 h averaged 57% for delivery by aerosol inhalation and ≥80% for the aspiration or intratracheal instillation techniques. Particle delivery methods did not cause lung inflammation/injury with use of inflammatory cells and chemoattractant cytokines as criteria. Scintigraphy can discern particle deposition and clearance from the lower respiratory tract in the mouse, is noninvasive and reproducible, and includes the capability for restudy and lung lavage when time course or chronic treatments are being considered.


mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Jeffrey A. Melvin ◽  
Erich V. Scheller ◽  
Christopher R. Noël ◽  
Peggy A. Cotter

ABSTRACTBordetellafilamentous hemagglutinin (FHA), a primary component of acellular pertussis vaccines, contributes to virulence, but how it functions mechanistically is unclear. FHA is first synthesized as an ~370-kDa preproprotein called FhaB. Removal of an N-terminal signal peptide and a large C-terminal prodomain (PD) during secretion results in “mature” ~250-kDa FHA, which has been assumed to be the biologically active form of the protein. Deletion of two C-terminal subdomains of FhaB did not affect production of functional FHA, and the mutant strains were indistinguishable from wild-type bacteria for their ability to adhere to the lower respiratory tract and to suppress inflammation in the lungs of mice. However, the mutant strains, which produced altered FhaB molecules, were eliminated from the lower respiratory tract much faster than wild-typeB. bronchiseptica, suggesting a defect in resistance to early immune-mediated clearance. Our results revealed, unexpectedly, that full-length FhaB plays a critical role inB. bronchisepticapersistence in the lower respiratory tract.IMPORTANCETheBordetellafilamentous hemagglutinin (FHA) is a primary component of the acellular pertussis vaccine and an important virulence factor. FHA is initially produced as a large protein that is processed during secretion to the bacterial surface. As with most processed proteins, the mature form of FHA has been assumed to be the functional form of the protein. However, our results indicate that the full-length form plays an essential role in virulencein vivo. Furthermore, we have found that FHA contains intramolecular regulators of processing and that this control of processing is integral to its virulence activities. This report highlights the advantage of studying protein maturation and function simultaneously, as a role for the full-length form of FHA was evident only fromin vivoinfection studies and not fromin vitrostudies on the production or maturation of FHA or even fromin vitrovirulence-associated activity assays.


2000 ◽  
Vol 68 (12) ◽  
pp. 6720-6728 ◽  
Author(s):  
Eric T. Harvill ◽  
Andrew Preston ◽  
Peggy A. Cotter ◽  
Andrew G. Allen ◽  
Duncan J. Maskell ◽  
...  

ABSTRACT Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica are closely related subspecies that cause respiratory tract infections in humans and other mammals and express many similar virulence factors. Their lipopolysaccharide (LPS) molecules differ, containing either a complex trisaccharide (B. pertussis), a trisaccharide plus an O-antigen-like repeat (B. bronchiseptica), or an altered trisaccharide plus an O-antigen-like repeat (B. parapertussis). Deletion of the wlb locus results in the loss of membrane-distal polysaccharide domains in the three subspecies of bordetellae, leaving LPS molecules consisting of lipid A and core oligosaccharide. We have used wlb deletion (Δwlb) mutants to investigate the roles of distal LPS structures in respiratory tract infection by bordetellae. Each mutant was defective compared to its parent strain in colonization of the respiratory tracts of BALB/c mice, but the location in the respiratory tract and the time point at which defects were observed differed significantly. Although the Δwlb mutants were much more sensitive to complement-mediated killing in vitro, they displayed similar defects in respiratory tract colonization in C5−/− mice compared with wild-type (wt) mice, indicating that increased sensitivity to complement-mediated lysis is not sufficient to explain the in vivo defects. B. pertussis andB. parapertussis Δwlb mutants were also defective compared to wt strains in colonization of SCID-beige mice, indicating that the defects were not limited to interactions with adaptive immunity. Interestingly, the B. bronchiseptica Δwlbstrain was defective, compared to the wt strain, in colonization of the respiratory tracts of BALB/c mice beginning 1 week postinoculation but did not differ from the wt strain in its ability to colonize the respiratory tracts of B-cell- and T-cell-deficient mice, suggesting that wlb-dependent LPS modifications in B. bronchiseptica modulate interactions with adaptive immunity. These data show that biosynthesis of a full-length LPS molecule by these three bordetellae is essential for the expression of full virulence for mice. In addition, the data indicate that the different distal structures modifying the LPS molecules on these three closely related subspecies serve different purposes in respiratory tract infection, highlighting the diversity of functions attributable to LPS of gram-negative bacteria.


2005 ◽  
Vol 79 (24) ◽  
pp. 15114-15122 ◽  
Author(s):  
Quynh N. Pham ◽  
Stéphane Biacchesi ◽  
Mario H. Skiadopoulos ◽  
Brian R. Murphy ◽  
Peter L. Collins ◽  
...  

ABSTRACT Chimeric versions of recombinant human metapneumovirus (HMPV) were generated by replacing the nucleoprotein (N) or phosphoprotein (P) open reading frame with its counterpart from the closely related avian metapneumovirus (AMPV) subgroup C. In Vero cells, AMPV replicated to an approximately 100-fold-higher titer than HMPV. Surprisingly, the N and P chimeric viruses replicated to a peak titer that was 11- and 25-fold higher, respectively, than that of parental HMPV. The basis for this effect is not known but was not due to obvious changes in the efficiency of gene expression. AMPV and the N and P chimeras were evaluated for replication, immunogenicity, and protective efficacy in hamsters. AMPV was attenuated compared to HMPV in this mammalian host on day 5 postinfection, but not on day 3, and only in the nasal turbinates. In contrast, the N and P chimeras were reduced approximately 100-fold in both the upper and lower respiratory tract on day 3 postinfection, although there was little difference by day 5. The N and P chimeras induced a high level of neutralizing serum antibodies and protective efficacy against HMPV; AMPV was only weakly immunogenic and protective against HMPV challenge, reflecting antigenic differences. In African green monkeys immunized intranasally and intratracheally, the mean peak titer of the P chimera was reduced 100- and 1,000-fold in the upper and lower respiratory tracts, whereas the N chimera was reduced only 10-fold in the lower respiratory tract. Both chimeras were comparable to wild-type HMPV in immunogenicity and protective efficacy. Thus, the P chimera is a promising live HMPV vaccine candidate that paradoxically combines improved growth in vitro with attenuation in vivo.


2016 ◽  
Vol 39 (2) ◽  
pp. 685-692 ◽  
Author(s):  
Hong Li ◽  
Tian Yang ◽  
Fei-Yan Li ◽  
Qian Ning ◽  
Zhong-Min Sun

Background/Aims: The study was designed to explore the potential relationship of TLR4 and endothelial PAS domain-containing protein 1 (EPAS1) in vivo and vitro experiments. Methods: Bronchoalveolar lavage fluid (BALF) samples were collected from 55 chronic obstructive pulmonary disease (COPD) patients and 25 healthy subjects. The differential cell count was performed using Wright-Giemsa staining. The expression levels of TLR4 and TLR5 were detected by RT-qPCR. The levels of methylation and mRNA expression of EPAS1 were assayed by bisulfite sequencing PCR and real-time PCR. The correlation of TLR4 and EPAS1 was also analyzed in TLR 4-overexpressing endothelial cells. Results: The results showed that the number of neutrophils, lymphocytes and macrophages and expression of TLR 4 were significantly increased in lower respiratory tract of COPD patients. Moreover, decreased EPAS1 mRNA and increased EPAS1 promoter methylation were detected in COPD, which were closely associated with increased TLR4 expression. According to in vitro experiments, TLR 4 inhibited EPAS1 mRNA expression and promoted promoter methylation in endothelial cells. Conclusion: These findings suggest that TLR4 over-expression decreased EPAS1expression which contributes to the progress of COPD.


2020 ◽  
Author(s):  
Hacer Kuzu Okur ◽  
Koray Yalcin ◽  
Cihan Tastan ◽  
Sevda Demir ◽  
Bulut Yurtsever ◽  
...  

UNSTRUCTURED Dornase alfa, the recombinant form of the human DNase I enzyme, breaks down neutrophil extracellular traps (NET) that include a vast amount of DNA fragments, histones, microbicidal proteins and oxidant enzymes released from necrotic neutrophils in the highly viscous mucus of cystic fibrosis patients. Dornase alfa has been used for decades in patients with cystic fibrosis to reduce the viscoelasticity of respiratory tract secretions, to decrease the severity of respiratory tract infections, and to improve lung function. Previous studies have linked abnormal NET formations to lung diseases, especially to acute respiratory distress syndrome (ARDS). Coronavirus disease 2019 (COVID-19) pandemic affected more than two million people over the world, resulting in unprecedented health, social and economic crises. The COVID-19, viral pneumonia that progresses to ARDS and even multiple organ failure, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). High blood neutrophil levels are an early indicator of SARS-CoV-2 infection and predict severe respiratory diseases. A similar mucus structure is detected in COVID-19 patients due to the accumulation of excessive NET in the lungs. Here, we show our preliminary results with dornase alfa that may have an in-vitro anti-viral effect against SARS-CoV-2 infection in a bovine kidney cell line, MDBK without drug toxicity on healthy adult peripheral blood mononuclear cells. In this preliminary study, we also showed that dornase alfa can promote clearance of NET formation in both an in-vitro and three COVID-19 cases who showed clinical improvement in radiological analysis (2-of-3 cases), oxygen saturation (SpO2), respiratory rate, disappearing of dyspnea and coughing.


1994 ◽  
Vol 5 (suppl c) ◽  
pp. 3C-8C ◽  
Author(s):  
Donald E Low ◽  
Lionel A Mandell

This prospective. single open-label sludy was conducted in 14 Canadian centres to assess lhe efncacy of I g, once a day intravenous ceftriaxone treatment administered for a minimum of three days in patients with lower respiratory tract infection. There were 137 patients enrolled. Age varied between 19 and 95 years (mean 68 years). Mosl patients (91 %) were diagnosed with community acquired pneumonia without bacteremia. Most of the cases (82%) were defined as modcralc or severe. Patients received ceftriaxone treatment for an average or five days. Macrolidcs or metronidazole were administered concomitantly wilh ceftriaxone in 34 patienls (25%). After a minimum of three days of ceftriaxone treatment. 59 palicnls (43%) were switched to oral antibiotics. Favourable treatment outcome was found in 92.9% and treatment failure (including relapse of infection) in 7.1 % o lpalicnls. Evaluable patients accounted for 91 % of patients enrolled in the study. Clinical cure and clinical improvement were achieved in 64.6 and 28.3% of the evaluable patients. respectively. Relapse of infection occurred in two patients (1.8%). and treatment failure was recorded in six cases (5.3%). Twelve patients (8.8%) died clue to reasons unrelated to the sludy treatment. Three adverse event (hives, diarrhea and phlebitis at the injection site) were possibly related to the study drug. A cross-Canada in vitro susceptibility surveillance study of bacterial pathogens. frequently the cause of pneumonia. found ceftriaxone to have minimal inhibitory concentrations in 90% of isolates that would support such a dosing regimen. with the exception of Enterobacter species. These rcsults support the use of 1 g, once daily ceftriaxone for the empirical treatment of pneumonia in those patients requiring hospitalization.


2021 ◽  
Vol 22 (3) ◽  
pp. 1491 ◽  
Author(s):  
Monica Iannotta ◽  
Carmela Belardo ◽  
Maria Consiglia Trotta ◽  
Fabio Arturo Iannotti ◽  
Rosa Maria Vitale ◽  
...  

Toll-like receptors (TLRs) are key receptors through which infectious and non-infectious challenges act with consequent activation of the inflammatory cascade that plays a critical function in various acute and chronic diseases, behaving as amplification and chronicization factors of the inflammatory response. Previous studies have shown that synthetic analogues of lipid A based on glucosamine with few chains of unsaturated and saturated fatty acids, bind MD-2 and inhibit TLR4 receptors. These synthetic compounds showed antagonistic activity against TLR4 activation in vitro by LPS, but little or no activity in vivo. This study aimed to show the potential use of N-palmitoyl-D-glucosamine (PGA), a bacterial molecule with structural similarity to the lipid A component of LPS, which could be useful for preventing LPS-induced tissue damage or even peripheral neuropathies. Molecular docking and molecular dynamics simulations showed that PGA stably binds MD-2 with a MD-2/(PGA)3 stoichiometry. Treatment with PGA resulted in the following effects: (i) it prevented the NF-kB activation in LPS stimulated RAW264.7 cells; (ii) it decreased LPS-induced keratitis and corneal pro-inflammatory cytokines, whilst increasing anti-inflammatory cytokines; (iii) it normalized LPS-induced miR-20a-5p and miR-106a-5p upregulation and increased miR-27a-3p levels in the inflamed corneas; (iv) it decreased allodynia in peripheral neuropathy induced by oxaliplatin or formalin, but not following spared nerve injury of the sciatic nerve (SNI); (v) it prevented the formalin- or oxaliplatin-induced myelino-axonal degeneration of sciatic nerve. SIGNIFICANCE STATEMENT We report that PGA acts as a TLR4 antagonist and this may be the basis of its potent anti-inflammatory activity. Being unique because of its potency and stability, as compared to other similar congeners, PGA can represent a tool for the optimization of new TLR4 modulating drugs directed against the cytokine storm and the chronization of inflammation.


Sign in / Sign up

Export Citation Format

Share Document