scholarly journals Characterization of Native Outer Membrane Vesicles from lpxL Mutant Strains of Neisseria meningitidis for Use in Parenteral Vaccination

2005 ◽  
Vol 73 (7) ◽  
pp. 4070-4080 ◽  
Author(s):  
Makda Fisseha ◽  
Ping Chen ◽  
Brenda Brandt ◽  
Todd Kijek ◽  
Elizabeth Moran ◽  
...  

ABSTRACT Native outer membrane vesicles (NOMV) of Neisseria meningitidis consist of intact outer membrane and contain outer membrane proteins (OMP) and lipooligosaccharides (LOS) in their natural conformation and membrane environment. NOMV have been safely used intranasally in P1 studies with encouraging results, but they are too toxic for parenteral vaccination. We now report the preparation and characterization of lpxL mutants that express LOS with reduced toxicity, and the evaluation of the potential of NOMV from these strains for use as a parenteral vaccine. A series of deletion mutants were prepared with knockouts of one or more of the lpxL1, lpxL2, or synX genes. The ΔlpxL2 mutants had a reduced growth rate, reduced level of LOS expression, and increased sensitivity to surfactants. In addition, ΔsynX ΔlpxL2 double mutants had reduced viability in stationary phase. The ΔlpxL1 ΔlpxL2 double mutant behaved essentially the same as the ΔlpxL2 single mutant. LOS from both lpxL mutant strains exhibited altered migration on polyacrylamide gels. The LOS of ΔlpxL2 mutants of L3,7 strains were fully sialylated. NOMV prepared from lpxL2 mutants was about 200-fold less active than wild-type NOMV in rabbit pyrogen tests and in tumor necrosis factor alpha release assays. Bactericidal titers induced in animals by ΔlpxL2 mutant NOMV were lower than those induced by ΔlpxL1 or wild-type NOMV. However, immunogenicity could be largely restored by use of an adjuvant. These results provide evidence that NOMV from ΔlpxL2 mutant strains will be safe and immunogenic in humans when given parenterally.

2007 ◽  
Vol 75 (11) ◽  
pp. 5434-5442 ◽  
Author(s):  
Vincent E. Weynants ◽  
Christiane M. Feron ◽  
Karine K. Goraj ◽  
Martine P. Bos ◽  
Philippe A. Denoël ◽  
...  

ABSTRACT Neisseria meningitidis serogroup B is a major cause of bacterial meningitis in younger populations. The available vaccines are based on outer membrane vesicles obtained from wild-type strains. In children less than 2 years old they confer protection only against strains expressing homologous PorA, a major, variable outer membrane protein (OMP). We genetically modified a strain in order to eliminate PorA and to overproduce one or several minor and conserved OMPs. Using a mouse model mimicking children's PorA-specific bactericidal activity, it was demonstrated that overproduction of more than one minor OMP is required to elicit antibodies able to induce complement-mediated killing of strains expressing heterologous PorA. It is concluded that a critical density of bactericidal antibodies needs to be reached at the surface of meningococci to induce complement-mediated killing. With minor OMPs, this threshold is reached when more than one antigen is targeted, and this allows cross-protection.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Soni Priya Valeru ◽  
Salah Shanan ◽  
Haifa Alossimi ◽  
Amir Saeed ◽  
Gunnar Sandström ◽  
...  

Vibrio cholerae, the causative agent of the diarrhoeal disease cholera, survives in aquatic environments. The bacterium has developed a survival strategy to grow and survive insideAcanthamoeba castellanii. It has been shown thatV. choleraeexpresses outer membrane proteins as virulence factors playing a role in the adherence to interacted host cells. This study examined the role of outer membrane protein A (OmpA) and outer membrane vesicles (OMVs) in survival ofV. choleraealone and during its interaction withA. castellanii. The results showed that anOmpAmutant ofV. choleraesurvived longer than wild-typeV. choleraewhen cultivated alone. Cocultivation withA. castellaniienhanced the survival of both bacterial strains andOmpAprotein exhibited no effect on attachment, engulfment, and survival inside the amoebae. However, cocultivation of theOmpAmutant ofV. choleraedecreased the viability ofA. castellaniiand this bacterial strain released more OMVs than wild-typeV. cholerae. Surprisingly, treatment of amoeba cells with OMVs isolated from theOmpAmutant significantly decreased viable counts of the amoeba cells. In conclusion, the results might highlight a regulating rule forOmpAin survival ofV. choleraeand OMVs as a potent virulence factor for this bacterium towards eukaryotes in the environment.


2006 ◽  
Vol 189 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Michael J. Brooks ◽  
Cassie A. Laurence ◽  
Eric J. Hansen ◽  
Scott D. Gray-Owen

ABSTRACT Moraxella catarrhalis is a human-restricted pathogen that can cause respiratory tract infections. In this study, we identified a previously uncharacterized 24-kDa outer membrane protein with a high degree of similarity to Neisseria Opa protein adhesins, with a predicted β-barrel structure consisting of eight antiparallel β-sheets with four surface-exposed loops. In striking contrast to the antigenically variable Opa proteins, the M. catarrhalis Opa-like protein (OlpA) is highly conserved and constitutively expressed, with 25 of 27 strains corresponding to a single variant. Protease treatment of intact bacteria and isolation of outer membrane vesicles confirm that the protein is surface exposed yet does not bind host cellular receptors recognized by neisserial Opa proteins. Genome-based analyses indicate that OlpA and Opa derive from a conserved family of proteins shared by a broad array of gram-negative bacteria.


2009 ◽  
Vol 77 (5) ◽  
pp. 2084-2093 ◽  
Author(s):  
V. Weynants ◽  
P. Denoël ◽  
N. Devos ◽  
D. Janssens ◽  
C. Feron ◽  
...  

ABSTRACT Currently available Neisseria meningitidis serogroup B (MenB) vaccines are based on outer membrane vesicles (OMVs) that are obtained from wild-type strains. They are purified with the aim of decreasing the lipooligosaccharide (LOS) content and hence reduce the reactogenicity of the vaccine even though LOS is a potential protective antigen. In <2-year-old children, these MenB vaccines confer protection only against strains expressing homologous PorA, a major and variable outer membrane protein. Our objective was to develop a safe LOS-based vaccine against MenB. To this end, we used modified porA knockout strains expressing genetically detoxified (msbB gene-deleted) L2 and L3,7 LOSs, allowing the production of LOS-enriched OMVs. The vaccine-induced antibodies were found to be bactericidal against nearly all invasive strains, irrespective of capsular serogroup. In addition, we have also demonstrated that LOS lacking the terminal galactose (with a lgtB mutation; truncated L3 LOS), but not LOS produced without the galE gene, induced a bactericidal antibody response in mice similar to that seen for LOS containing the full lacto-N-neotetraose (L3,7 LOS). In conclusion, a bivalent detoxified LOS OMV-based vaccine demonstrated the potential to afford a broad cross-protection against meningococcal disease.


2006 ◽  
Vol 75 (3) ◽  
pp. 1364-1372 ◽  
Author(s):  
Jeannette N. Williams ◽  
Paul J. Skipp ◽  
Holly E. Humphries ◽  
Myron Christodoulides ◽  
C. David O'Connor ◽  
...  

ABSTRACT Current experimental vaccines against serogroup B Neisseria meningitidis are based on meningococcal outer membrane (OM) proteins present in outer membrane vesicles (OMV) in which toxic lipopolysaccharide is depleted by detergent extraction. Knowledge of the composition of OM and OMV is essential for developing new meningococcal vaccines based on defined antigens. In the current study, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nanocapillary liquid chromatography-tandem mass spectrometry were used to investigate the proteomes of OM and OMV from meningococcal strain MC58 and OM from a lipopolysaccharide-deficient mutant. The analysis of OM revealed a composition that was much more complex than the composition that has been reported previously; a total of 236 proteins were identified, only 6.4% of which were predicted to be located in the outer membrane. The most abundant proteins included not only the well-established major OM proteins (PorA, PorB, Opc, Rmp, and Opa) but also other proteins, such as pilus-associated protein Q (PilQ) and a putative macrophage infectivity protein. All of these proteins were also present in OMV obtained by extraction of the OM with deoxycholate. There were markedly increased levels of some additional proteins in OM from the lipopolysaccharide-deficient mutant, including enzymes that contribute to the tricarboxylic acid cycle. In all the preparations, the proteins not predicted to have an OM location were predominantly periplasmic or cytoplasmic or had an unknown location, and relatively few cytoplasmic membrane proteins were detected. However, several proteins that have previously been identified as potential vaccine candidates were not detected in either OM preparations or in OMV. These results have important implications for the development and use of vaccines based on outer membrane proteins.


2019 ◽  
Author(s):  
Jiajun Wang ◽  
Rémi Terrasse ◽  
Jayesh Arun Bafna ◽  
Lorraine Benier ◽  
Mathias Winterhalter

Multi-drug resistance in Gram-negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we extract, purify and reconstitute them into artificial planar membranes. To avoid this time-consuming procedure, here we show a robust approach using fusion of native outer membrane vesicles (OMV) into planar lipid bilayer which moreover allows also to some extend the characterization of membrane protein channels in their native environment. Two major membrane channels from <i>Escherichia coli</i>, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion revealed surprisingly single or only few channel activities. The asymmetry of the OMV´s translates after fusion into the lipid membrane with the LPS dominantly present at the side of OMV addition. Compared to conventional reconstitution methods, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution. The addition of Enrofloxacin on the LPS side yields somewhat higher association (<i>k<sub>on</sub></i>) and lower dissociation (<i>k<sub>off</sub></i>) rates compared to LPS-free reconstitution. We conclude that using outer membrane vesicles is a fast and easy approach for functional and structural studies of membrane channels in the native membrane.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nayeong Kim ◽  
Hyo Jeong Kim ◽  
Man Hwan Oh ◽  
Se Yeon Kim ◽  
Mi Hyun Kim ◽  
...  

Abstract Background Zinc uptake-regulator (Zur)-regulated lipoprotein A (ZrlA) plays a role in bacterial fitness and overcoming antimicrobial exposure in Acinetobacter baumannii. This study further characterized the zrlA gene and its encoded protein and investigated the roles of the zrlA gene in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles (OMVs) in A. baumannii ATCC 17978. Results In silico and polymerase chain reaction analyses showed that the zrlA gene was conserved among A. baumannii strains with 97–100% sequence homology. Recombinant ZrlA protein exhibited a specific enzymatic activity of D-alanine-D-alanine carboxypeptidase. Wild-type A. baumannii exhibited more morphological heterogeneity than a ΔzrlA mutant strain during stationary phase. The ΔzrlA mutant strain was more susceptible to gentamicin than the wild-type strain. Sizes and protein profiles of OMVs were similar between the wild-type and ΔzrlA mutant strains, but the ΔzrlA mutant strain produced 9.7 times more OMV particles than the wild-type strain. OMVs from the ΔzrlA mutant were more cytotoxic in cultured epithelial cells than OMVs from the wild-type strain. Conclusions The present study demonstrated that A. baumannii ZrlA contributes to bacterial morphogenesis and antimicrobial resistance, but its deletion increases OMV production and OMV-mediated host cell cytotoxicity.


2021 ◽  
Author(s):  
Peng Li ◽  
Xiuran Wang ◽  
Xiangwan Sun ◽  
Jesse Cimino ◽  
Ziqiang Guan ◽  
...  

To develop an effective Pseudomonas aeruginosa (PA) outer-membrane-vesicles (OMVs) vaccine, we eliminated multiple virulence factors from a wild-type P. aeruginosa PA103 strain (PA103) to generate a recombinant strain, PA-m14. The PA-m14 strain was tailored with a pSMV83 plasmid encoding the pcrV-hitA T fusion gene to produce OMVs. The recombinant OMVs enclosed increased amounts of PcrV-HitA T bivalent antigen (PH) (termed OMV-PH) and exhibited reduced toxicity compared to the OMVs from PA103. Intramuscular vaccination with OMV-PH from PA-m14(pSMV83) afforded 70% protection against intranasal challenge with 6.5 × 10 6 CFU (∼30 LD 50 ) of PA103, while immunization using OMVs without the PH antigen (termed OMV-NA) or the PH antigen alone failed to offer effective protection against the same challenge. Further immune analysis showed that the OMV-PH immunization significantly stimulated potent antigen-specific humoral and T-cell (Th1/Th17) responses in comparison to the PH or OMV-NA immunization in mice, which can effectively hinder PA infection. Undiluted anti-sera from OMV-PH-immunized mice displayed significant opsonophagocytic killing of WT PA103 compared to antisera from PH antigen- or OMV-NA-immunized mice. Moreover, the OMV-PH immunization afforded significant antibody-indentpednet cross-protection to mice against PAO1 and a clinical isolate AMC-PA10 strains. Collectively, the recombinant PA OMV delivering the PH bivalent antigen exhibits high immunogenicity and would be a promising next-generation vaccine candidate against PA infection.


Sign in / Sign up

Export Citation Format

Share Document