scholarly journals Bacteroides fragilis-Derived Lipopolysaccharide Produces Cell Activation and Lethal Toxicity via Toll-Like Receptor 4

2005 ◽  
Vol 73 (9) ◽  
pp. 5620-5627 ◽  
Author(s):  
Giuseppe Mancuso ◽  
Angelina Midiri ◽  
Carmelo Biondo ◽  
Concetta Beninati ◽  
Maria Gambuzza ◽  
...  

ABSTRACT Bacteroides fragilis, which is part of the normal intestinal flora, is a frequent cause of serious disease, especially in diabetic and surgical patients. In these conditions, B. fragilis lipopolysaccharide (LPS) is likely to play a major pathophysiologic role. B. fragilis LPS is structurally different from classical enterobacterial LPS, whose biological activities are mediated by Toll-like receptor 4 (TLR4) activation. The ability of B. fragilis LPS to activate TLR4 and TLR2 was investigated here, since evidence on this issue is scarce and controversial. Each of four different protein-free B. fragilis LPS preparations could induce interleukin-8 responses in cells cotransfected with TLR4/CD14/MD2 but not TLR4/CD14 alone. Two of the preparations also induced cytokine production in cells cotransfected with TLR2/CD14 or in peritoneal macrophages from TLR4 mutant C3H/HeJ mice. Both of these activities, however, were lost after repurification with a modified phenol reextraction procedure. Importantly, all preparations could induce endotoxic shock in TLR2-deficient mice, but not in TLR4 mutant C3H/HeJ mice. Consistent with these findings, anti-TLR4 and anti-CD14, but not anti-TLR2, antibodies could inhibit B. fragilis LPS-induced cytokine production in human monocytes. Collectively, these results indicate that B. fragilis LPS signals via a TLR4/CD14/MD2-dependent pathway, and it is unable to activate TLR2. Moreover, our data document the occurrence of TLR2-activating contaminants even in highly purified B. fragilis LPS preparations. This may explain earlier contradictory findings on the ability of B. fragilis LPS to activate cells in the absence of functional TLR4. These data may be useful to devise strategies to prevent the pathophysiologic changes observed during B. fragilis sepsis and to better understand structure-activity relationships of LPS.

2004 ◽  
Vol 101 (12) ◽  
pp. 4186-4191 ◽  
Author(s):  
T. L. Gioannini ◽  
A. Teghanemt ◽  
D. Zhang ◽  
N. P. Coussens ◽  
W. Dockstader ◽  
...  

2017 ◽  
Vol 114 (48) ◽  
pp. E10399-E10408 ◽  
Author(s):  
Jessica C. Jang ◽  
Jiang Li ◽  
Luca Gambini ◽  
Hashini M. Batugedara ◽  
Sandeep Sati ◽  
...  

Helminths trigger multiple immunomodulatory pathways that can protect from sepsis. Human resistin (hRetn) is an immune cell-derived protein that is highly elevated in helminth infection and sepsis. However, the function of hRetn in sepsis, or whether hRetn influences helminth protection against sepsis, is unknown. Employing hRetn-expressing transgenic mice (hRETNTg+) and recombinant hRetn, we identify a therapeutic function for hRetn in lipopolysaccharide (LPS)-induced septic shock. hRetn promoted helminth-induced immunomodulation, with increased survival of Nippostrongylus brasiliensis (Nb)-infected hRETNTg+ mice after a fatal LPS dose compared with naive mice or Nb-infected hRETNTg− mice. Employing immunoprecipitation assays, hRETNTg+Tlr4−/− mice, and human immune cell culture, we demonstrate that hRetn binds the LPS receptor Toll-like receptor 4 (TLR4) through its N terminal and modulates STAT3 and TBK1 signaling, triggering a switch from proinflammatory to anti-inflammatory responses. Further, we generate hRetn N-terminal peptides that are able to block LPS proinflammatory function. Together, our studies identify a critical role for hRetn in blocking LPS function with important clinical significance in helminth-induced immunomodulation and sepsis.


2020 ◽  
Vol 217 (8) ◽  
Author(s):  
Thomas Jun Feng Lim ◽  
Maegan Bunjamin ◽  
Christiane Ruedl ◽  
I-hsin Su

Talin critically controls integrin-dependent cell migration, but its regulatory role in skin dendritic cells (DCs) during inflammatory responses has not been investigated. Here, we show that talin1 regulates not only integrin-dependent Langerhans cell (LC) migration, but also MyD88-dependent Toll-like receptor (TLR)–stimulated DC activation. Talin1-deficient LCs failed to exit the epidermis, resulting in reduced LC migration to skin-draining lymph nodes (sdLNs) and defective skin tolerance induction, while talin1-deficient dermal DCs unexpectedly accumulated in the dermis despite their actomyosin-dependent migratory capabilities. Furthermore, talin1-deficient DCs exhibited compromised chemotaxis, NFκB activation, and proinflammatory cytokine production. Mechanistically, talin1 was required for the formation of preassembled TLR complexes in DCs at steady state via direct interaction with MyD88 and PIP5K. Local production of PIP2 by PIP5K then recruited TIRAP to the preassembled complexes, which were required for TLR signalosome assembly during DC activation. Thus, talin1 regulates MyD88-dependent TLR signaling pathways in DCs through a novel mechanism with implications for antimicrobial and inflammatory immune responses.


Sign in / Sign up

Export Citation Format

Share Document