scholarly journals The Paralogous MarR/DUF24-Family Repressors YodB and CatR Control Expression of the Catechol Dioxygenase CatE in Bacillus subtilis

2010 ◽  
Vol 192 (18) ◽  
pp. 4571-4581 ◽  
Author(s):  
Bui Khanh Chi ◽  
Kazuo Kobayashi ◽  
Dirk Albrecht ◽  
Michael Hecker ◽  
Haike Antelmann

ABSTRACT The redox-sensing MarR/DUF24-type repressor YodB controls expression of the azoreductase AzoR1 and the nitroreductase YodC that are involved in detoxification of quinones and diamide in Bacillus subtilis. In the present paper, we identified YodB and its paralog YvaP (CatR) as repressors of the yfiDE (catDE) operon encoding a catechol-2,3-dioxygenase that also contributes to quinone resistance. Inactivation of both CatR and YodB is required for full derepression of catDE transcription. DNA-binding assays and promoter mutagenesis studies showed that CatR protects two inverted repeats with the consensus sequence TTAC-N5-GTAA overlapping the −35 promoter region (BS1) and the transcriptional start site (TSS) (BS2). The BS1 operator was required for binding of YodB in vitro. CatR and YodB share the conserved N-terminal Cys residue, which is required for redox sensing of CatR in vivo as shown by Cys-to-Ser mutagenesis. Our data suggest that CatR is modified by intermolecular disulfide formation in response to diamide and quinones in vitro and in vivo. Redox regulation of CatR occurs independently of YodB, and no protein interaction was detected between CatR and YodB in vivo using protein cross-linking and mass spectrometry.

1998 ◽  
Vol 180 (10) ◽  
pp. 2736-2743 ◽  
Author(s):  
Jianzhong Huang ◽  
Wandee Yindeeyoungyeon ◽  
Ram P. Garg ◽  
Timothy P. Denny ◽  
Mark A. Schell

ABSTRACT Ralstonia (Pseudomonas)solanacearum is a soil-borne phytopathogen that causes a wilting disease of many important crops. It makes large amounts of the exopolysaccharide EPS I, which it requires for efficient colonization, wilting, and killing of plants. Transcription of the epsoperon, encoding biosynthetic enzymes for EPS I, is controlled by a unique and complex sensory network that responds to multiple environmental signals. This network is comprised of the novel transcriptional activator XpsR, three distinct two-component regulatory systems (VsrAD, VsrBC, and PhcSR), and the LysR-type regulator PhcA, which is under the control of PhcSR. Here we show that thexpsR promoter (P xpsR ) is simultaneously controlled by PhcA and VsrD, permitting XpsR to act like a signal integrator, simultaneously coordinating signal input into theeps promoter from both VsrAD and PhcSR. Additionally, we used in vivo expression analysis and in vitro DNA binding assays with substitution and deletion mutants of P xpsR to show the following. (i) PhcA primarily interacts with a typical 14-bp LysR-type consensus sequence around position −77, causing a sixfold activation of P xpsR ; a weaker, less-defined binding site between −183 and −239 likely enhances PhcA binding and activation via the −77 site another twofold. (ii) Full 70-fold activation of P xpsR requires the additional interaction of the VsrD response regulator (or its surrogate) with a 14-bp dyadic sequence centered around −315 where it enhances activation (and possibly binding) by PhcA; however, VsrD alone cannot activate P xpsR . (iii) Increasing the distance between the putative VsrD binding site from that of PhcA by up to 232 bp did not dramatically affect P xpsR activation or regulation.


2007 ◽  
Vol 189 (14) ◽  
pp. 5170-5182 ◽  
Author(s):  
Kazutake Hirooka ◽  
Satoshi Kunikane ◽  
Hiroshi Matsuoka ◽  
Ken-Ichi Yoshida ◽  
Kanako Kumamoto ◽  
...  

ABSTRACT Bacillus subtilis LmrA is known to be a repressor that regulates the lmrAB and yxaGH operons; lmrB and yxaG encode a multidrug resistance pump and quercetin 2,3-dioxygenase, respectively. DNase I footprinting analysis revealed that LmrA and YxaF, which are paralogous to each other, bind specifically to almost the same cis sequences, LmrA/YxaF boxes, located in the promoter regions of the lmrAB operon, the yxaF gene, and the yxaGH operon for their repression and containing a consensus sequence of AWTATAtagaNYGgTCTA, where W, Y, and N stand for A or T, C or T, and any base, respectively (three-out-of-four match [in lowercase type]). Gel retardation analysis indicated that out of the eight flavonoids tested, quercetin, fisetin, and catechin are most inhibitory for LmrA to DNA binding, whereas quercetin, fisetin, tamarixetin, and galangin are most inhibitory for YxaF. Also, YxaF bound most tightly to the tandem LmrA/YxaF boxes in the yxaGH promoter region. The lacZ fusion experiments essentially supported the above-mentioned in vitro results, except that galangin did not activate the lmrAB and yxaGH promoters, probably due to its poor incorporation into cells. Thus, the LmrA/YxaF regulon presumably comprising the lmrAB operon, the yxaF gene, and the yxaGH operon is induced in response to certain flavonoids. The in vivo experiments to examine the regulation of the synthesis of the reporter β-galactosidase and quercetin 2,3-dioxgenase as well as that of multidrug resistance suggested that LmrA represses the lmrAB and yxaGH operons but that YxaF represses yxaGH more preferentially.


2012 ◽  
Vol 194 (23) ◽  
pp. 6560-6573 ◽  
Author(s):  
Ana Isabel Platero ◽  
Manuel García-Jaramillo ◽  
Eduardo Santero ◽  
Fernando Govantes

ABSTRACTTheatzS-atzT-atzU-atzV-atzWgene cluster of thePseudomonassp. strain ADP atrazine-degradative plasmid pADP-1, which carries genes for an outer membrane protein and the components of a putative ABC-type solute transporter, is located downstream fromatzR, which encodes the LysR-type transcriptional regulator of the cyanuric acid-degradative operonatzDEF. Here we describe the transcriptional organization of these genes. Our results show that all six genes are cotranscribed from the PatzRpromoter to form theatzRSTUVWoperon. A second, stronger promoter, PatzT, is found withinatzSand directs transcription of the four distal genes. PatzTis σNdependent, activated by NtrC in response to nitrogen limitation with the aid of IHF, and repressed by AtzR. A combination ofin vivomutational analysis and primer extension allowed us to locate the PatzTpromoter and map the transcriptional start site. Similarly, we used deletion and point mutation analyses, along within vivoexpression studies andin vitrobinding assays, to locate the NtrC, IHF, and AtzR binding sites and address their functionality. Our results suggest a regulatory model in which NtrC activates PatzTtranscription via DNA looping, while AtzR acts as an antiactivator that diminishes expression by interfering with the activation process.


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Janire Urrutia ◽  
Alejandra Aguado ◽  
Carolina Gomis-Perez ◽  
Arantza Muguruza-Montero ◽  
Oscar R. Ballesteros ◽  
...  

Abstract Background The amino acid sequence of proteins generally carries all the necessary information for acquisition of native conformations, but the vectorial nature of translation can additionally determine the folding outcome. Such consideration is particularly relevant in human diseases associated to inherited mutations leading to structural instability, aggregation, and degradation. Mutations in the KCNQ2 gene associated with human epilepsy have been suggested to cause misfolding of the encoded Kv7.2 channel. Although the effect on folding of mutations in some domains has been studied, little is known of the way pathogenic variants located in the calcium responsive domain (CRD) affect folding. Here, we explore how a Kv7.2 mutation (W344R) located in helix A of the CRD and associated with hereditary epilepsy interferes with channel function. Results We report that the epilepsy W344R mutation within the IQ motif of CRD decreases channel function, but contrary to other mutations at this site, it does not impair the interaction with Calmodulin (CaM) in vitro, as monitored by multiple in vitro binding assays. We find negligible impact of the mutation on the structure of the complex by molecular dynamic computations. In silico studies revealed two orientations of the side chain, which are differentially populated by WT and W344R variants. Binding to CaM is impaired when the mutated protein is produced in cellulo but not in vitro, suggesting that this mutation impedes proper folding during translation within the cell by forcing the nascent chain to follow a folding route that leads to a non-native configuration, and thereby generating non-functional ion channels that fail to traffic to proper neuronal compartments. Conclusions Our data suggest that the key pathogenic mechanism of Kv7.2 W344R mutation involves the failure to adopt a configuration that can be recognized by CaM in vivo but not in vitro.


2021 ◽  
Vol 7 (6) ◽  
pp. 439
Author(s):  
Tecla Ciociola ◽  
Walter Magliani ◽  
Tiziano De Simone ◽  
Thelma A. Pertinhez ◽  
Stefania Conti ◽  
...  

It has been previously demonstrated that synthetic antibody-derived peptides could exert a significant activity in vitro, ex vivo, and/or in vivo against microorganisms and viruses, as well as immunomodulatory effects through the activation of immune cells. Based on the sequence of previously described antibody-derived peptides with recognized antifungal activity, an in silico analysis was conducted to identify novel antifungal candidates. The present study analyzed the candidacidal and structural properties of in silico designed peptides (ISDPs) derived by amino acid substitutions of the parent peptide KKVTMTCSAS. ISDPs proved to be more active in vitro than the parent peptide and all proved to be therapeutic in Galleria mellonella candidal infection, without showing toxic effects on mammalian cells. ISDPs were studied by circular dichroism spectroscopy, demonstrating different structural organization. These results allowed to validate a consensus sequence for the parent peptide KKVTMTCSAS that may be useful in the development of novel antimicrobial molecules.


2021 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Narendra Pratap Singh ◽  
Bony De Kumar ◽  
Ariel Paulson ◽  
Mark E. Parrish ◽  
Carrie Scott ◽  
...  

Knowledge of the diverse DNA binding specificities of transcription factors is important for understanding their specific regulatory functions in animal development and evolution. We have examined the genome-wide binding properties of the mouse HOXB1 protein in embryonic stem cells differentiated into neural fates. Unexpectedly, only a small number of HOXB1 bound regions (7%) correlate with binding of the known HOX cofactors PBX and MEIS. In contrast, 22% of the HOXB1 binding peaks display co-occupancy with the transcriptional repressor REST. Analyses revealed that co-binding of HOXB1 with PBX correlates with active histone marks and high levels of expression, while co-occupancy with REST correlates with repressive histone marks and repression of the target genes. Analysis of HOXB1 bound regions uncovered enrichment of a novel 15 base pair HOXB1 binding motif HB1RE (HOXB1 response element). In vitro template binding assays showed that HOXB1, PBX1, and MEIS can bind to this motif. In vivo, this motif is sufficient for direct expression of a reporter gene and over-expression of HOXB1 selectively represses this activity. Our analyses suggest that HOXB1 has evolved an association with REST in gene regulation and the novel HB1RE motif contributes to HOXB1 function in part through a repressive role in gene expression.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Malinee Thanee ◽  
Sureerat Padthaisong ◽  
Manida Suksawat ◽  
Hasaya Dokduang ◽  
Jutarop Phetcharaburanin ◽  
...  

Abstract Background Sulfasalazine (SSZ) is widely known as an xCT inhibitor suppressing CD44v9-expressed cancer stem-like cells (CSCs) being related to redox regulation. Cholangiocarcinoma (CCA) has a high recurrence rate and no effective chemotherapy. A recent report revealed high levels of CD44v9-positive cells in CCA patients. Therefore, a combination of drugs could prove a suitable strategy for CCA treatment via individual metabolic profiling. Methods We examined the effect of xCT-targeted CD44v9-CSCs using sulfasalazine combined with cisplatin (CIS) or gemcitabine in CCA in vitro and in vivo models and did NMR-based metabolomics analysis of xenograft mice tumor tissues. Results Our findings suggest that combined SSZ and CIS leads to a higher inhibition of cell proliferation and induction of cell death than CIS alone in both in vitro and in vivo models. Xenograft mice showed that the CD44v9-CSC marker and CK-19-CCA proliferative marker were reduced in the combination treatment. Interestingly, different metabolic signatures and significant metabolites were observed in the drug-treated group compared with the control group that revealed the cancer suppression mechanisms. Conclusions SSZ could improve CCA therapy by sensitization to CIS through killing CD44v9-positive cells and modifying the metabolic pathways, in particular tryptophan degradation (i.e., kynurenine pathway, serotonin pathway) and nucleic acid metabolism.


1993 ◽  
Vol 13 (11) ◽  
pp. 6866-6875 ◽  
Author(s):  
D C Hagen ◽  
L Bruhn ◽  
C A Westby ◽  
G F Sprague

Transcription activation of alpha-specific genes in Saccharomyces cerevisiae is regulated by two proteins, MCM1 and alpha 1, which bind to DNA sequences, called P'Q elements, found upstream of alpha-specific genes. Neither MCM1 nor alpha 1 alone binds efficiently to P'Q elements. Together, however, they bind cooperatively in a manner that requires both the P' sequence, which is a weak binding site for MCM1, and the Q sequence, which has been postulated to be the binding site for alpha 1. We analyzed a collection of point mutations in the P'Q element of the STE3 gene to determine the importance of individual base pairs for alpha-specific gene transcription. Within the 10-bp conserved Q sequence, mutations at only three positions strongly affected transcription activation in vivo. These same mutations did not affect the weak binding to P'Q displayed by MCM1 alone. In vitro DNA binding assays showed a direct correlation between the ability of the mutant sequences to form ternary P'Q-MCM1-alpha 1 complexes and the degree to which transcription was activated in vivo. Thus, the ability of alpha 1 and MCM1 to bind cooperatively to P'Q elements is critical for activation of alpha-specific genes. In all natural alpha-specific genes the Q sequence is adjacent to the degenerate side of P'. To test the significance of this geometry, we created several novel juxtapositions of P, P', and Q sequences. When the Q sequence was opposite the degenerate side, the composite QP' element was inactive as a promoter element in vivo and unable to form stable ternary QP'-MCM1-alpha 1 complexes in vitro. We also found that addition of a Q sequence to a strong MCM1 binding site allows the addition of alpha 1 to the complex. This finding, together with the observation that Q-element point mutations affected ternary complex formation but not the weak binding of MCM1 alone, supports the idea that the Q sequence serves as a binding site for alpha 1.


Neoplasia ◽  
2001 ◽  
Vol 3 (3) ◽  
pp. 179-188 ◽  
Author(s):  
Cynthia M. Simbulan-Rosenthal ◽  
Dean S. Rosenthal ◽  
RuiBai Luo ◽  
Raed Samara ◽  
Mira Jung ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document